Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 33, 2016 - Issue 4
433
Views
25
CrossRef citations to date
0
Altmetric
Report

Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats

, , , , , & show all

References

  • Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE. (2003). Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol. 460:380–93.
  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. (2002). Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 12:1574–83.
  • Cuenca N, Fernandez-Sanchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. (2014). Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 43:17–75.
  • Cuenca N, Kolb H. (1998). Circuitry and role of substance P-immunoreactive neurons in the primate retina. J Comp Neurol. 393:439–56.
  • Cuenca N, Pinilla I, Sauve Y, Lu B, Wang S, Lund RD. (2004). Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience. 127:301–17.
  • Cugini P, Cruciani F, De Rosa R, Pellegrino AM, Fontana S, Coda S, De Francesco GP, Mastromatteo A, Antonelli B, Vingolo EM, Regine F. (2001). Alterations of blood pressure and heart rate circadian rhythmic structure in non-blind patients affected by retinitis pigmentosa. J Hum Hypertens. 15:577–81.
  • Cui Q, Ren C, Sollars PJ, Pickard GE, So KF. (2015). The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience. 284:845–53.
  • Dagnelie G. (2013). Age-related psychophysical changes and low vision. Invest Ophthalmol Vis Sci. 54:ORSF88–93.
  • de Zavalia N, Plano SA, Fernandez DC, Lanzani MF, Salido E, Belforte N, Sarmiento MI, Golombek DA, Rosenstein RE. (2011). Effect of experimental glaucoma on the non-image forming visual system. J Neurochem. 117:904–14.
  • Dryja TP, McEvoy JA, McGee TL, Berson EL. (2000). Novel rhodopsin mutations Gly114Val and Gln184Pro in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 41:3124–7.
  • Esquiva G, Lax P, Cuenca N. (2013). Impairment of intrinsically photosensitive retinal ganglion cells associated with late stages of retinal degeneration. Invest Ophthalmol Vis Sci. 54:4605–18.
  • Fernandez DC, Sande PH, de Zavalia N, Belforte N, Dorfman D, Casiraghi LP, Golombek D, Rosenstein RE. (2013). Effect of experimental diabetic retinopathy on the non-image-forming visual system. Chronobiol Int. 30:583–97.
  • Garcia-Ayuso D, Di Pierdomenico J, Esquiva G, Nadal-Nicolas FM, Pinilla I, Cuenca N, Vidal-Sanz M, Agudo-Barriuso M, Villegas-Perez MP. (2015). Inherited photoreceptor degeneration causes the death of melanopsin-positive retinal ganglion cells and increases their coexpression of Brn3a. Invest Ophthalmol Vis Sci. 56:4592–604.
  • Garcia-Ayuso D, Salinas-Navarro M, Agudo M, Cuenca N, Pinilla I, Vidal-Sanz M, Villegas-Perez MP. (2010). Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina. Exp Eye Res. 91:800–10.
  • Gonzalez Fleitas MF, Bordone M, Rosenstein RE, Dorfman D. (2015). Effect of retinal ischemia on the non-image forming visual system. Chronobiol Int. 32:152–63.
  • Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 4:1165.
  • Gordo MA, Recio J, Sanchez-Barcelo EJ. (2001). Decreased sleep quality in patients suffering from retinitis pigmentosa. J Sleep Res. 10:159–64.
  • Gubin DG, Gubin GD, Waterhouse J, Weinert D. (2006). The circadian body temperature rhythm in the elderly: effect of single daily melatonin dosing. Chronobiol Int. 23:639–58.
  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 295:1065–70.
  • Ionescu D, Driver HS, Heon E, Flanagan J, Shapiro CM. (2001). Sleep and daytime sleepiness in retinitis pigmentosa patients. J Sleep Res. 10:329–35.
  • Jean-Louis G, Zizi F, Lazzaro DR, Wolintz AH. (2008). Circadian rhythm dysfunction in glaucoma: A hypothesis. J Circadian Rhythms. 6:1.
  • Klein R, Klein BE. (2013). The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest Ophthalmol Vis Sci. 54:ORSF5–ORSF13.
  • Kolomiets B, Dubus E, Simonutti M, Rosolen S, Sahel JA, Picaud S. (2010). Late histological and functional changes in the P23H rat retina after photoreceptor loss. Neurobiol Dis. 38:47–58.
  • Lahouaoui H, Coutanson C, Cooper HM, Bennis M, Dkhissi-Benyahya O. (2014). Clock genes and behavioral responses to light are altered in a mouse model of diabetic retinopathy. PLoS One. 9:e101584.
  • Lax P, Esquiva G, Esteve-Rudd J, Otalora BB, Madrid JA, Cuenca N. (2012). Circadian dysfunction in a rotenone-induced parkinsonian rodent model. Chronobiol Int. 29:147–56.
  • Lax P, Otalora BB, Esquiva G, Rol Mde L, Madrid JA, Cuenca N. (2011). Circadian dysfunction in P23H rhodopsin transgenic rats: Effects of exogenous melatonin. J Pineal Res. 50:183–91.
  • Li SY, Yau SY, Chen BY, Tay DK, Lee VW, Pu ML, Chan HH, So KF. (2008). Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway. Cell Mol Neurobiol. 28:1095–107.
  • Lockley SW, Arendt J, Skene DJ. (2007). Visual impairment and circadian rhythm disorders. Dialogues Clin Neurosci. 9:301–14.
  • Lucas RJ, Douglas RH, Foster RG. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 4:621–6.
  • Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, Bush RA, Sieving PA. (2000). P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 41:3200–9.
  • Marc RE, Jones BW, Watt CB, Strettoi E. (2003). Neural remodeling in retinal degeneration. Prog Retin Eye Res. 22:607–55.
  • Mrosovsky N, Thompson S. (2008). Negative and positive masking responses to light in retinal degenerate slow (rds/rds) mice during aging. Vision Res. 48:1270–3.
  • Ortiz-Tudela E, Martinez-Nicolas A, Campos M, Rol MA, Madrid JA. (2010). A new integrated variable based on thermometry, actimetry and body position (TAP) to evaluate circadian system status in humans. PLoS Comput Biol. 6:e1000996.
  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science. 301:525–7.
  • Pinilla I, Fernández-Sánchez L, Segura FJ, Sánchez-Cano AI, M. TJ, L. F-B, Eellsh JT, Lax P, Cuenca N. (2015). Long time remodeling during retinal degeneration evaluated by Optical Coherence Tomography, immunocytochemistry and Fundus Autofluorescence Exp Eye Res (in press).
  • Pinilla I, Lund RD, Sauve Y. (2005). Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation. Neurosci Lett. 382:16–21.
  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. (2000). A novel human opsin in the inner retina. J Neurosci. 20:600–5.
  • Puthussery T, Taylor WR. (2010). Functional changes in inner retinal neurons in animal models of photoreceptor degeneration. Adv Exp Med Biol. 664:525–32.
  • Quinn R. (2005). Comparing rat’s to human’s age: how old is my rat in people years? Nutrition. 21:775–7.
  • Robinson GA, Madison RD. (2004). Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res. 44:2667–74.
  • Skene DJ, Arendt J. (2007). Circadian rhythm sleep disorders in the blind and their treatment with melatonin. Sleep Med. 8:651–5.
  • Tasaki H, Serita T, Ueyama C, Kitano K, Seto S, Yano K. (2006). Long-Term follow-up of the circadian rhythm of heart rate and heart rate variability in healthy elderly patients. Circ J. 70:889–95.
  • Turek FW, Penev P, Zhang Y, van Reeth O, Zee P. (1995). Effects of age on the circadian system. Neurosci Biobehav Rev. 19:53–8.
  • Vugler A, Semo M, Ortin-Martinez A, Rojanasakul A, Nommiste B, Valiente-Soriano FJ, Garcia-Ayuso D, Coffey P, Vidal-Sanz M, Gias C. (2015). A role for the outer retina in development of the intrinsic pupillary light reflex in mice. Neuroscience. 286:60–78.
  • Vugler AA, Semo M, Joseph A, Jeffery G. (2008). Survival and remodeling of melanopsin cells during retinal dystrophy. Vis Neurosci. 25:125–38.
  • Weinert D, Waterhouse J. (1999). Daily activity and body temperature rhythms do not change simultaneously with age in laboratory mice. Physiol Behav. 66:605–12.
  • Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. (1990). Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 27:563–72.
  • Zhang Y, Kornhauser JM, Zee PC, Mayo KE, Takahashi JS, Turek FW. (1996). Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience. 70:951–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.