Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 7, 1990 - Issue 5-6
16
Views
23
CrossRef citations to date
0
Altmetric
Original Article

The Cellular Mechanism of Orcadian Rhythms–A View on Evidence, Hypotheses and Problems

&
Pages 353-370 | Received 01 Jul 1990, Accepted 01 Oct 1990, Published online: 07 Jul 2009

References

  • Ha ken H. Synergetics–An Introduction. Springer, Heidelberg 1987
  • Rensing L., Jaeger N. Temporal Order. Springer, Heidelberg 1985
  • Edmunds L. N., Jr. Cellular and Molecular Bases of Biological Clocks. Springer, Heidelberg 1988
  • Rosbash M., Hall J. The molecular biology of circadian rhythms. Neuron 1989; 3: 387–398
  • Njus D., Gooch V. D., Hastings J. W. Precision of the Gonyaulax circadian clock. Cell Biophys 1981; 3: 223–231
  • Goodwin B. C. Temporal Organization in Cells. Academic Press, London 1963
  • Pavlidis R. Biological Oscillators: Their Mathematical Analysis. Academic Press, New York 1973
  • Lloyd D., Edwards S. W., Fry J. C. Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanlhamoeba castellanii. Proc Natl Acad Sci USA 1982a; 79: 3785–3788
  • Michel U., Hardeland R. On the chronobiology of Tetrahymena. III. Temperature compensation and temperature dependence in the ultradian oscillation of tyrosine aminotransferase. J. Interdiscipl. Cycle Res., 16: 17–23
  • Kippert F. Temperature compensation of ultradian rhythms in ciliates. J Interdiscipl Cycle Res 1985; 16: 272–273
  • Balzer I., Hardeland R. Influence of temperature on biological rhythms. Int J Biometeorol 1988; 32: 231–241
  • Lloyd D., Kippert F. Temperature-compensated ultradian clocks time protozoan cell cycles. Chronobiologia 1987; 14: 197–198
  • Adams K. J. Circadian clock control of an ultradian rhythm in Euglena gracilis. J Interdiscipl Cycle Res 1988; 19: 153–154
  • Klevecz R R. Quantized generation time in mammalian cells as an expression of the cellular clock. Proc Natl Acad Sci USA 1976; 73: 4012–4016
  • Klevecz R. R., Kauffman S. A., Shymko R. M. Cellular clocks and oscillators. Int Rev Cytology 1985; 86: 97–128
  • Lloyd D., Poole R. K., Edwards S. W. The Cell Division Cycle. Academic Press, London 1982b
  • Lloyd D., Edwards S. W. Ultradian rhythms in lower eukaryotes: timers for cell cycles. J Interdiscipl Cycle Res 1985; 16: 283
  • Lloyd D., Edwards S. W. Temperature-compensated ultradian rhythms in lower eukaryotes indicate timing for cell division and perhaps circadian events. J Interdiscipl Cycle Res 1986; 17: 145–146
  • Ehret C. F., Dobra K. W. The infradian eukaryotic cell: a circadian energy-reserve escapement. Proc XII Int Conf Int Soc Chronobiol. II Ponte, Milano 1977; 663–570
  • Edmunds L. N., Jr. Circadian and infradian rhythms. The Biology of Euglena, D. E. Buetow. Academic Press, New York 1982; Vol. 3: 53–124
  • Edmunds L. N., Jr., Laval-Martin D. L. Cell division cycles and circadian oscillators. Cell Cycle Clocks, L. N. Edmunds, Jr. Marcel Dekker, New York, 295–324
  • Edmunds L. N., Jr., Laval-Martin D. L. Cell division cycles and circadian oscillators in Euglena. Chronobiol Int 1984b; 1: 1–9
  • Vicker M., Becker J., Gebauer G., Schill W., Rensing L. Circadian rhythms of cell cycle processes in the marine dinoflagellate Gonyaulax polyedra. Chronobiology 1988; 5: 5–17
  • Homma K., Hastings J. W. Cell cycle synchronization of Gonyaulax polyedra by filtration: Quantized generation times. J Biol Rhythms 1988; 3: 49–58
  • Jerebzoff S. Are there ultradian rhythms at the molecular level?. J Inter discipl Cycle Res 1987; 18: 916
  • Feldman J. P., Dunlap J. C. Neurospora crassa: A unique system for studying circadian rhythms. Photochem Photobiol Rev 1983; 7: 319
  • Hardeland R., Neuhaus-Steinmetz U., Michel U., Balzer I. Ultradian rhythms of tyrosine aminotransferase activity in Tetrahymena thermophila and Euglena gracilis. J Interdiscipl Cycle Res 1988; 19: 177
  • Balzer I., Neuhaus-Steinmetz U., Quentin E., van Wiitlen M., Hardeland R. Concomitance of circadian and ca.-4-hour ultradian rhythms in Euglena gracilis. J Interdiscipl Cycle Res 1989; 20: 15–24
  • Lloyd D., Edwards S. W., Kippert F., Jenkins H., Griffiths A. Ultradian rhythms: internal timekeeping in lower eukaryotes. Bull Gr El Rhythms Biol 1988; 20: 10
  • Jenkins H. A., Griffith A. J., Lloyd D. Simultaneous operation of ultradian and circadian rhythms in Chlamydomonas reinhardii. J Interdiscipl Cycle Res 1989; 20: 257–264
  • Tyson J. Size control of cell division. J Theor biol 1987; 126: 381
  • Draetta G., Luca F., Westendorf J., Brizuela L., Ruderman J., Beach D. Cdc 2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 1989; 56: 829–838
  • Ptashne M., Jeffrey A., Johnson A. D., Maurer R., Meyer B. J., Pabo C. O., Toberts T. M., Sauer R. T. How the X-repressor and cro work. Cell 1980; 19: 1–11
  • Nomura M., Jinks-Robertson S., Miura A. Regulation of ribosome biosynthesis in Escherichia coli. Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression, M. Grunberg Manago, B. Safer. Elsevier, Amsterdam 1983
  • Hayflick L. The limited in vitro life of human diploid cell strains. Exp Cell Res 1965; 37: 614–636
  • Winfree A. The Geometry of Biological Time. Springer, Heidelberg 1980
  • Cornelius G., Rensing L. Can phase response curves of various treatments of circadian rhythms be explained by effects on protein synthesis and degradation?. Bio Systems 1980; 15: 35–47
  • Rensing L., Schill W. Perturbations of cellular circadian rhythms by light and temperature. Temporal Disorder in Human Oscillatory Systems, L. Rensing, U. Heidenander, M. C. Mackey. Springer-Verlag, Heidelberg 1987; 233–245
  • Goodwin B. C. Oscillatory behaviour in enzymatic control processes. Adv Enzyme Regul 1965; 3: 425–438
  • Drescher K., Cornelius G., Rensing L. Phase response curves obtained by perturbing different variables of a 24 h model oscillator based on translational control. J Theor Biol 1982; 94: 345–353
  • Hastings J. W., Dunlap J. C., Taylor W. R. Protein synthesis and protein turnover in circadian cycles. Current Topics in Cellular Regulation 18, B. Horecker, E. Stadtman. Academic Press, New York 1981; 519–529
  • Feldman J. F. Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis. Proc Natl Acad Sci USA 1967; 57: 108021087
  • Stahr N., Holzapfel G., Hardeland R. Phase shifting of the Gonyaulax clock by puromycin. Jlnterdiscipl Cycle Res 1980; 11: 277–284
  • Ehrhardt V., Krug H. F., Hardeland R. On the role of gene expression in the circadian oscillator mechanism. J lnterdiscipl Cycle Res, 11: 257–276
  • Karakashian M. W., Hastings J. W. The effects of inhibitors of macromolecular biosynthesis upon the persistent rhythm of luminescence in Gonyaulax polyedra. J Gen Physiol 1963; 47: 1–11
  • Karakashian M. W., Schweiger H. G. 80 S protein synthesis provides a component of the Acetabularia circadian clock. J Cell Biol 1975; 67: 200A
  • Karakashian W. W., Schweiger H. G. Evidence for a cycloheximide-sensitive component in the biological clock of Acetabularia. Exp Cell Res 1976a; 98L: 303–312
  • Karakashian M. W., Schweiger H. G. Temperature dependence of cycloheximide-sensitive phase of circadian cycle in Acetabularia medilerranea. Proc Natl Acad Sci USA 1976b; 73: 3216–3219
  • Schweiger H. G., Schweiger M. Circadian rhythms in unicellular organisms: an endeavor to explain the molecular mechanism. Int Rev Cytol 1977; 51: 315–342
  • Dunlap J. C., Taylor W., Hastings J. W. The effects of protein synthesis inhibitors on the Gonyaulax clock. I. Phase shifting effects of cycloheximide. J Comp Physiol B 1980; 138: 1–8
  • Rensing L., Taylor W., Dunlap J., Hastings J. W. The effects of protein synthesis inhibitors on the Gonyaulax clock. II. The effect of cycloheximide on ultrastructural parameters. J Comp Physiol B 1980; 138: 9–18
  • Taylor W., Hastings J. W. Minute-long pulses of anisomycin phase-shift the biological clock in Gonyaulax by hours. Naturwissenschaften 1982; 69: 94–96
  • Taylor W., Dunlap J. C., Hastings J W. Inhibitors of protein synthesis on 80 S ribosomes phase shift the Gonyaulax clock. J Exp Biol 1982c; 97: 121–136
  • Taylor W., Krasnow R., Dunlap J. C., Broda H., Hastings J. W. Critical pulses of anisomycin drive the circadian oscillator in Gonyaulax towards its singularity. J Comp Physiol B 1982b; 148: 11–25
  • Nakashima H., Perlman J., Feldman J. F. Cycloheximide-induced phase shifting of the circadian clock of Neurospora. Am J Physiol 1981; 241: R31–R35
  • Schulz R., Pilatus U., Rensing L. On the role of energy metabolism in Neurospora circadian clock function Chronobioll. 1985; 223–233
  • Rothman B. S., Strumwasser F. Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide: electrophysiological and biochemical studies. J Gen Physiol 1976; 68: 359–384
  • Rothman B. S., Strumwasser F. Manipulation of a neuronal circadian oscillator with inhibitors of macromolecular synthesis. Fed Proc 1977; 36: 2050–2055
  • Jacklet J. W. Neuronal circadian rhythm: phase shifting by a protein synthesis inhibitor. Science 1977; 198: 69–71
  • Jacklet J. W. Circadian rhythm from eye of Aplysia: temperature compensation of the effects of protein synthesis inhibitors. J Exp Biol 1980a; 84: 1–15
  • Jacklet J. W. Protein synthesis requirement of the Aplysia circadian clock tested by active and inactive derivatives of the inhibitor anisomycin. J Exp Biol 1980b; 85: 33–42
  • Schweiger H. G., Hartwig R., Schweiger M. Cellular aspects of circadian rhythms. J Cell Sci 1986; 181–200, Suppl. 4
  • Hobohm U., Cornelius G., Taylor W., Rensing L. Is the circadian clock of Gonyaulax held stationary after a strong pulse of anisomycin?. Comp Biochem Physiol 1984; 79A: 371–378
  • Ehret C. F., Trucco E. Molecular models for the circadian clock. I. The chronon concept. J Theor Biol 1967; 15: 240–262
  • Karakashian M. W., Hastings J. W. The inhibition of a biological clock byactinomycin D. Proc Natl Acad Sci USA 1962; 48: 2130–2136
  • Vanden Driessche T., Bonotto S., Brachet J. Inability of rifampicin to inhibit circadian rhythmicity in Acetabularia despite inhibition of RNA synthesis. Biochim Biophys Acta 1970; 224: 631–634
  • Mergenhagen D., Schweiger H. G. The effect of different inhibitors of transcription and translation on the gene expression and control of circadian rhythm in individual cells of Acetabularia. Exp Cell Res 1975; 94: 321–326
  • Schroeder-Lorenz A., Rensing L. Circadian clock mechanisms and synthesis rates of individual protein species in Gonyaulax polyedra. Comp Biochem Physiol 1986; 85B: 315–323
  • Sweeney B. M., Haxo F. T. Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 1961; 134: 1361–1363
  • Richter G. Die Tagsperiodik der Photosynthese bei Acetabularia and ihre Abhangigkeit von Kernaktivitat, RNS-und Protein-Synthese. Z Naturforsch 1963; 18b: 1085–1089
  • Schweiger E., Wallraff H. G., Schweiger H. G. Über tagesperiodische Schwankungen der Sauerstoffbilanz kernhaltiger und kernioser Acetabularia mediterranea. Z Naturforsch 1964; 19b: 499–505
  • Nagel G., Rensing L. Circadian rhythm in size and 'H-uridine incorporation of single puffs of Drosophila salivary glands in vitro. Exp Cell Res 1974; 89: 436–439
  • Rosbash M., Colot H., Dushay M., Ewer J., Hardin P., Liu X., Rutila J., Siwicki K., Zerr D., Hall J. The per gene and circadian rhythms. Eur J Cell Biol 1990; 51(Suppl. 30)5
  • Loros J. J., Denome S. A., Dunlap J. C. Molecular cloning of genes under control of the circadian clock in Neurospora. Am J Physiol 1981; 241: R31–R35
  • Leong T.-Y., Schweiger H. G. The role of chloroplast membrane protein synthesis in the circadian clock. Occurrence of a polypeptide which tentatively is involved in the clock. Chloroplast Development, G. Akoyunoglou. Elsevier/North Holland, Amsterdam 1978; 323–332
  • Paulsen H., Bogorad L. Diurnal and circadian rhythms in the accumulation and synthesis of mRNA for the light-harvesting chlorophyll a/b binding protein in Tobacco. Plant Physio! 1988; 89: 1104–1109
  • Nagy F., Kay S. A., Chua N. J. A circadian clock regulates transcription of the wheat cab-1 gene. Genes Dev 1988; 2: 376–382
  • Meyer H., Thinel U., Piechulla B. Molecular characterization of the diurnal circadian expression of the chlorophyll a/b-binding proteins in leaves of tomato and other dicotyledonous and monocotyledonous plant species. Planta 1989; 180: 5–15
  • Kloppstech K. Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta 1985; 165: 502–506
  • Giuliano G., Hoffmann N. E., Ko K., Scolnik P. A., Cashmore A. R. A light-entrained circadian clock controls transcription of several plant genes. EMBO J 1988; 7: 3635–3642
  • Stayton M., Brosio P., Dunsmuir P. Photosynthetic genes of Petunia (Mitchell) are differentially expressed during the diurnal cycle. Plant Physiol. 1989; 89: 776–782
  • Taylor W. C. Transcriptional regulation by a circadian rhythm. Plant Cell 1989; 1: 259–264
  • Strumwasser F. The demonstration and manipulation of a circadian rhythm in a single neuron. Circadian Clocks, J. Ashoff. North Holland, Amsterdam 1965; 442–462
  • Schroeder-Lorenz A., Rensing L. Circadian changes in protein synthesis rate and protein phosphorylation in cell-free extracts of Gonyaulax polyedra. Planta 1987; 170: 7–13
  • Morse D., Milos P. M., Roux E., Hastings J. W. Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc Natl Acad Sci USA 1989; 86: 172–176
  • Milos P., Morse D., Hastings J. W. Circadian control over synthesis of many Gonyaulax proteins is at the translational level. Naturwiss 1990; 77: 87–89
  • Leong T.-Y., Schweiger H. G. The role of chloroplast membrane-protein synthesis in the circadian clock. Purification and partial characterization of a polypeptide which is suggested to be involved in the clock. Eur J Biochem 1979; 98: 187–194
  • Hartwig R., Schweiger M., Schweiger R., Schweiger H. G. Identification of a high molecular weight polypeptide that may be part of the circadian clockwork in Acetabularia. Proc Natl Acad Sci USA 1985; 82: 6899–6902
  • Volknandt W., Hardeland R. Circadian rhythmicity of protein synthesis in the dinoflagellate, Gonyaulax polyedra: a biochemical and radioautographic investigation. Comp Biochem Physiol 1984; 77B: 493–500
  • Krug H. F., Hardeland R. Diurnal rhythms of hepatic mRNA activities for integral membrane proteins, as determined by in vitro translation in a cell-free system from rat liver. J Interdiscipl Cycle Res 1981; 12: 35–40
  • Krug H. F., Hardeland R. Effect of cycloheximide and changes in lighting regimen on the diurnal rhythm of rat liver protein synthesis. J Interdiscipl Cycle Res 1984; 15: 119–132
  • Krug H. F., Hardeland R. Diurnal rhythmicity in cytosolic control of cell-free hepatic protein synthesis. J Interdiscipl Cycle Res 1985; 16: 193–201
  • Walla O. J., de Groot E. The 41000 Mr essential circadian clock protein of Chlorella: Identity with 3 phosphoglycerate kinase?. Eur J Cell Biol 1990; 51(Suppl. 30)54
  • Wildemann J., Schweiger M. A 64 kD protein may be part of the biological clock in Chlamydomonas reinhardii. Eur J Cell Biol 1990; 51(Suppl. 30)54
  • Reddy P., Jacquier A. C., Abovich N., Peterson G., Rosbash M. The period clock locus of D. melanogaster codes for a proteoglycan. Cell 1986; 46: 53–61
  • Bargiello T. A., Saez L., Baylies M. K., Gasic G., Young M. W., Spray D. S. The Drosophila clock gene per affects intercellular junctional communication. Nature 1987; 328: 486–491
  • Ewer J., Rosbash M., Hall J. C. An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity. Nature 1988; 333: 82–84
  • Siwicki K. K., Eastman E., Peterson G., Rosbash M., Hall J. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1988; 1: 141–156
  • Rensing L., Bos A., Kroeger J., Cornelius G. Possible link between circadian rhythm and heat shock response. Chronobiol Int 1987; 4: 543–549
  • Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet 1988; 22: 631–677
  • Ananthan J., Goldberg A. J., Voellmy R. Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 1986; 232: 522–524
  • Kondo T. Phase shift of the circadian rhythm of Lemna caused by pulses of a leucine analog trifluoroleucine. Plant Physiol 1988; 88: 953–958
  • Kondo T. Comparison of phase shifts of the circadian rhythm of ff uptake in Lemna gibba G3 by various amino acid analogs. Plant Physiol 1989; 90
  • Hastings J. W., Broda H., Johnson C. H. Phase and period effects of physical and chemical factors. Do cells communicate?. Temporal Order, L. Rensing, N. Jaeger. Springer, Heidelberg 1985; 213–221
  • Cornelius G., Rensing L. Circadian rhythm of heat shock protein synthesis of Neurospora crassa. Eur J Cell Biol 1986; 40: 130–132
  • Kippert F. Circadian control of heat tolerance in stationary phase cultures of Schizosaccharomyces pombe. Arch Microbiol 1989; 151: 177–179
  • Otto B., Grimm B., Ottersbach P., Klopstech K. Circadian control of the accumulation of mRNA for light- and heat-inducible chloroplast proteins in pea. Plant Physiol 1988; 88: 21–25
  • Hallberg R. L., Kraus K. W., Hallberg E. M. Induction of acquired thermotolerance in Tetrahymena thermophila: Effects of protein synthesis inhibitors. Mol Cell Biol 2061–2069; 5
  • Hardeland R., Harnau G., Rusenberg M., Balzer I. Multiplicity or uniformity of cellular temperature compensation mechanisms?. J Interdiscipl Cycle Res 1986; 17: 121–123
  • Cornelius G., Schroeder-Lorenz A., Rensing L. Circadian clock control of protein synthesis and degradation in Gonyaulax polyedra. Planta 1985; 166: 365–370
  • Harnau G., Balzer I., Hardeland R. Temperature compensation of protein synthesis in the dinoflagellate. Gonyaulax polyedra. Proc 11th lnt Congr Biometeorol. 1989, (in press)
  • Brinkmann K. Metabolic control of temperature compensation in the circadian rhythm of Euglena gracilis. Biochronometry, M. Menaker. National Academy of Sciences, Washington 1971; 567–593
  • Olesiak W., Ungar A., Johnson C. H., Hastings W. J. Are protein synthesis inhibition and phase shifting of the circadian clock in Gonyaulax correlated?. J Biol Rhythms 1987; 2: 121–138
  • Thorey I., Rode I., Harnau G., Hardeland R. Conditionality of phase resetting by inhibitors of 80 S translation in Gonyaulax polyedra. J Comp Physiol B 1987; 157: 85–89
  • Balzer I., Possehl C, Rode I., Hardeland R. Novel temperature effects on circadian rhythmicity of Gonyaulax. Proc llth lnt Congr Biometeorol. West Lafayette. 1989, (in press)
  • Dunlap J. C., Feldman J. F. On the role of protein synthesis in the circadian clock oi Neurospora crassa. Proc Natl Acad Sci USA 1988; 85: 1096–1100
  • Engelmann W., Schrempf W. Membrane models for circadian rhythms. Photochem Photobiol Rev 1980; 5: 49–87
  • Njus D., Sulzman F. M., Hastings J. W. Membrane model for the circadian clock. Nature 1974; 248: 116–120
  • Balzer J. U., Hardeland R. Advance shifts of the bioluminescence rhythms in Gonyaulax polyedra by pharmaca potentially acting on membranes. J Interdiscipl Cycle Res 1981; 12: 29–34
  • Taylor W., Hastings J. W. Aldehydes phase shift in the Gonyaulax clock. J Comp Physiol 1979; 130: 359–362
  • Heat Shock Response of Eukaryotic Cells, L. Nover. Springer, Heidelberg
  • Scholübbers H. G., Taylor W., Rensing L. Are membrane properties essential for the circadian rhythm of Gonyaulax?. Am J Physiol 1984; 247: R250–256
  • Block G. D, Khalsa S. B. S. Cellular basis of circadian rhythmicity in Bulla: a model system. Trends in Chronobiology, W. T. J. M. Hekkens, G. A. Kerkhof, W. J. Rietveld. Pergamon Press, Oxford 1988; 55–66
  • Brody S., Martins S. A. Circadian rhythms in Neurospora crassa: Effects of unsaturated fatty acids. J Bacteriol 1979; 137: 912–915
  • Sweeney B. M. Freeze-fracture studies of thecal membranes of Gonyaulax polyedra. Circadian changes in the particles of one membrane face. J Cell Biol 1976; 68: 451–461
  • Brody S., Dieckmann C., Mikolajczyk S. Circadian rhythms in Neurospora crassa: The effects of point mutations on the proteolipid portion of the mitochondrial ATP synthetase. Mol Gen Genet 1985; 200: 155–161
  • Goto K., Laval-Martin D., Edmunds L. N., Jr. Biochemical modelling of an autonomously oscillatory clock in Euglena. Science 1985; 228: 1284–1288
  • Kippert F. Endocytobiotic coordination, intracellular calcium signalling, and the origin of endogenous rhythms. Ann NY Acad Sci 1987; 503: 476–477
  • Woolum J. C., Strumwasser F. Is the period of the circadian oscillation in the eye of Aplysia directly homeostatically regulated?. J Comp Physiol 1983; 151: 253–259
  • Techel D., Gebauer G., Kohler W., Braumann T., Jastorff B., Rensing L. On the role of Ca2+-calmodulin-dependent and cAMP-dependent protein phosphorylation in the circiadian rhythm of Neurospora crassa. J Comp Physiol B 1990; 159: 695–706
  • Nakashima H. Calcium inhibits phase shifting of the circadian conidation rhythm of Neurospora crassa by the calcium ionophore A 23187. Plant Physiol 1984; 76: 612–614
  • Cornelius G., Gebauer G., Techel D. Inositol trisphosphate induces calcium release from Neurospora crassa vacuoles. Biochem Biophys Res Comm 1989; 162: 852–856
  • Raeburn D. Calcium entry blocking drugs: Their classification and sites of action in smooth muscle cells. Medical Biol 1987; 65: 178–180
  • Nakashima J. Phase shifting of the circadian conidiation rhythm in Neurospora crassa by calmodulin antagonists. J Biol Rhythms 1986; 1: 163–169
  • Lonergan T. A. A possible second role for calmodulin in biological clock-controlled processes in Euglena. Plant Physiol 1986; 82: 226–229, 1986
  • Alkon D. L., Rasmussen H. A spatial-temporal model of cell activation. Science 1988; 239: 998–1005
  • Eskin A., Corrent G., Lin C. Y., McAdoo D. J. Mechanism for shifting the phase of a circadian rhythm by serotonin: Involvement of cAMP. Proc Natl Acad Sci USA 1982; 79: 660–664
  • Lotshaw D. P., Jacklet J. W. Serotonin induced protein phosphorylation in the Aplysia eye. Comp Biochem Physiol 1987; 86C: 27–32
  • Eskin A., Takahashi J. S., Zatz M., Block G. D. Cyclic guanosine 3′,5′ monophosphate mimics the effects of light on a circadian pacemaker in the eye of Aplysia. J Neurosci 1984; 4: 2466–2471
  • Cotton G., Vanden Driessche T. Identification of calmodulin in Acetabularia: its distribution and physiological significance. J Cell Sci 1987; 87: 337–347
  • Vanden Driessche Th. 1988 Research on the molecular basis of circadian rhythmicity. The cellular approach. Trendsin Chronobiology, W. T. J. M. Hekkens, G. A. Kerkhof, W. J. Rietveld. Pergamon Press, Oxford 1988
  • Hasunuma L., Funadera K., Shinohara Y., Furukawa K., Watanabe M. Circadian oscillation and light-induced changes in the concentration of cyclic nucleotides in Neurospora. Curr Genet 1987; 12: 127–133
  • Binkley S. The Pineal: Endocrine and Non-endocrine Function. Prentice-HallCliffs, Englewood, NJ 1988
  • Brulfert J., Vidal J., Le Marechal P., Gadal P., Queiroz O., Kluge M., Kruger J. Phosphorylation-dephosphorylation process as a probable mechanism for the diurnal regulatory changes of phosphoenolpyruvate carboxylase in CAM plants. Biochem Biophys Res Comm 1986; 136: 151–159
  • Echevarria Ch., Vidal J., Le Marechal P., Brulfert J., Rancheva R., Gadal P. The phosphorylation of Sorghum leaf phosphoenolpuyruvate carboxylase is a Ca2+-calmodulin dependent process. Biochem Biophys Res Comm 1988; 155: 835–840
  • Kluge M., Maier P., Brulfert J., Faist K., Wollny E. Regulation of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi. Biochem J 1988; 239: 213–220
  • Nimmo G. A., Wilkins M. B., Fewson C. A., Nimmo H. G. Persistent circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and its sensitivity to inhibition by malate. Planta 1987; 170: 408–415
  • Jerebzoff-Quintin S., Jerebzoff S. Reversible self-phosphorylation of asparaginase complex in Leptophaeria michotii: characterization of associated protein kinase and protein phosphatase activities. Biochem Biophys Res. Comm 1986; 140: 1135–1142

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.