Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 8, 1991 - Issue 4
43
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Cytometry and Time-Dependent Variations in Peripheral Blood and Bone Marrow Cells: A Literature Review and Relevance to the Chronotherapy of Cancer

, &
Pages 235-250 | Received 01 Dec 1990, Accepted 01 Mar 1991, Published online: 07 Jul 2009

References

  • Barlogie B, Raber M N, Schumann J, et al. Flow cytometry in clinical research. Cancer Res 1983; 43: 3982–97
  • Pui C-H, Williams D L, Raimondi S C, et al. Hypodiploidy is associated with poor prognosis in childhood acute lymphoblastic leukemia. Blood 1987; 70: 247–53
  • Tribukait B. Flow cytometry in surgical pathology and cytology of tumors of the genito-urinary tract. Advances in clinical cytology, L G Koss, D V Coleman. Masson, New York 1984; Vol. 2: 163–89
  • Clark G M, Dressier L G, Owens M A, Pounds G, Oldaker T, McGuire W L. Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. N Engl J Med 1989; 320: 627–33
  • McGuire W L. Adjuvant therapy of node-negative breast cancer. N Engl J Med 1989; 320: 525–7
  • Gale R P. Myelosuppressive effects of antineoplastic chemotherapy, N G Testa, R P Gale. Marcel Dekker, New York 1988
  • Frei E, Cannelos G P. Dose: a critical factor in cancer chemotherapy. Am J Med 1980; 69: 585
  • Hryniuk W, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 1984; 2: 1281–8
  • Crissman H A. Simplified method for DNA and protein staining of human hematopoietic cell samples. Cytometry 1981; 2: 59–62
  • Darzynkiewicz Z, Andreef F M. Multiparameter flow cytometry: application in analysis of the cell cycle. Clin Bull 1981; 11: 47–57
  • Shapiro H M. Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pryonin Y. Cytometry 1981; 2: 143–150
  • Noronha A, Richman D P. Simultaneous cell surface phenotype and cell cycle analysis of lymphocytes by flow cytometry. J Hislochem Cytochem 1984; 32: 821–6
  • Lund-Johansen F, Bjerknes R, Laerum O D. Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry 1990; 11: 610–6
  • Mayall B H. Cytometry in the clinical laboratory. Quo Vadis?. Annals of the NY AS. 1986; 468: 1–17
  • Reinert E. Die Zählung der Blutkörperchen und deren Bedeutung für die Therapie. Vogel, Leipzig 1891
  • Halberg F, Sothern R B, Roitman B. Agreement of circadian characteristics for total leucocyte counts in different geographic locations. Proceedings of the XII International Conference for Chronobiol-ogy. II Ponte, Milano 1977; 3–17
  • Morley A. A neutrophil cycle in healthy individuals. Lancet 1966; ii: 1220
  • Reinberg A, Schuller E, Delasnerie N, Clench J, Helary M. Rythmes circadiens et circannuels des leucocytes, proteines totales, immunoglobulines A, G et M; Etude chex 9 adultes jeunes et sains. Nouv PresseMed 1977; 6: 3819–23
  • Saunders A M. Sources of physiological variation in differential leukocyte counting. Blood Cells 1985; 11: 31–48
  • Berger J. Seasonal variations in blood pictures of mice of H strain. Z Versuchstierk 1979; 21: 233–37
  • Berger J. Seasonal influences on circadian rhythms in the blood picture of laboratory mice. Z Versuchstierk 1980; 22: 122–34
  • Berger J. Seasonal influences on circadian variations in blood picture of laboratory rats. Zwierzeta Laboratorynje 1981; 18: 3–25
  • Berger J. Seasonal influences on circadian rhythms in the blood picture of SPF rats housed under artificial illumination. Folia Haematol 1983; 110: 55–70
  • Gidlow D A, Church J F, Clayton B E. Seasonal variations in haematological and biochemical parameters. Ann Clin Biochem 1986; 23: 310–16
  • Haus E, Lakatua D J, Swoyer J, Sackett-Lundeen L. Chronobiology in hematology and immunology. AmJAnat 1983; 168: 467–517
  • Mauriac P, Cabouat P. l'etude des variations de la formule leucocytaire ches l'homme normal. Paris Med 1921; 11: 407–8
  • Sabin F R, Cunningham R S, Doan C A, Kindwall J A. The normal rhythm of white blood cells. Bull Johns Hopkins Hosp 1925; 37: 14–67
  • Servantie M, Panzat C, Monod N. Recherche de la crise hemoclasique par ingestion de Sucre chez les diabetiques. J Med Bordeaux 1921; 12: 360
  • Shaw A FB. The diurnal tides of the leucocytes of man. J Path Bad 1927; 30: 1–19
  • Smith C, McDowell A M. Normal rhythm of white blood cells in women. Arch Int Med 1929; 43: 68–84
  • Woronoff A, Riskin J. Uber die Leucocytose bei normalen Menschen und Hunden. Wien Arch Inn Med 1925; 10: 45–58
  • Bain B J, England J M. Normal haematological values: sex differences in neutrophil counts. Br Med J 1975; 1: 306–9
  • Doan C A, Zerfas L G. The rhythmic range of the white blood cells in human, pathological leucopenic and leucocytic states with a study of thirty-two human bone marrows. J Exp Med 1927; 46: 511–39
  • Garrey W E, Bryan W R. Variations in white blood cells counts. Physiol Rev 1935; 15: 597–638
  • Josephson B, Dahlberg G. Variations in the cell content and chemical composition of the human blood due to age, sex and season. ScandJ Clin Lab Invest 1952; 4: 216–36
  • Morra L, Ponassi A, Caristo G, et al. Comparison between diurnal changes induced by hydrocortisone and epinephrin in circulating myeloid progenitor cells (CFU-GM) in man. Biomed Pharma-cother 1984; 38: 167–70
  • Reinberg A, Schuller E, Clench J, Smolensky M H. Orcadian and circannual rhythms of leukocytes, proteins and immunoglobulins. Recent advances in the chronobiology of allergy and immunology, M H Smolensky, A Reinberg, J P McGovern. Pergamon Press, New York 1980; 251–9
  • Sharp G WG. Reversal of diurnal leukocyte variations in man. J Endocrin 1960; 21: 107–14
  • Simpson R H. Physiological leucocyte counts and detection of small deviations from normal. Br J Radiol 1933; 6: 705–21
  • Sletvold O. Orcadian rhythms of peripheral blood leukocytes in aging mice. Mech Ageing Dev 1987; 39: 251–61
  • Stetson R D. Normal variations in white blood cells under condition of minimal metabolism. Arch Int Med 1927; 40: 488–95
  • Knyzynski A, Fischer H. Orcadian fluctuations in the activity of phagocytic cells in blood, spleen and peritonal cavity of mice as measured by zymosan-induced chemoluminescence. J Immunol 1981; 1127: 2508–11
  • Laerum O D, Smaaland R, Bjerknes R, Sletvold O, Lote K. Flow cytometric measurements of circa-dian variations in human hemopoiesis and phagocytosis [Abstract]. Proceedings of the XII International Meeting of the Society for Analytical Cytology, Cambridge, 1987
  • Pigatto P D, Radaelli A, Tadini G, Polenghi M M, Brambilla L, Altomare G, Carandente F. Orcadian rhythm of the in vivo migration of neutrophils in psoriatic patients. Arch Dermatol Res 1985; 277: 185–9
  • Ashkenazy Y E, Ramot B, Brok-Simoni F, Holtzman F. Blood leukocyte enzyme activities. 1. Diurnal rhythm in normal individuals. J Interdiscipl Cycle Res 1973; 4: 193–205
  • Appel W. Uber die Tagesschwankungen der Eosinophilen. Z Gesamte Exp Med 1939; 104: 15–21
  • Halberg F, Haus E, Cardoso S S, et al. Toward a chronotherapy of neoplasia: tolerance of treatment depends upon host rhythms. Experientia 1973; 29: 909–34
  • Halberg F, Visscher M B. Regular diurnal physiological variations in eosinophil levels in five stocks of mice. Proc Soc Exp Biol Med 1950; 75: 846–7
  • Rud F. The eosinophil count in health and mental disease. A biometrical study. Tanum, Oslo 1947
  • Tatai K, Ogawa S. A study of diurnal variation in circulating eosinophils especially with reference to sleep in healthy individuals. Jap J Physiol 1951; 1: 328–31
  • Halberg F, Visscher M B, Bittner J J. Eosinophil rhythm in mice: range of occurrence, effects of illumination, feeding and adrenalectomy. Am J Physiol 1953; 174: 109–22
  • Visscher M B, Halberg F. Daily rhythms in number of circulating eosinophils and some related phenomena. Ann NY Acad Sci 1955; 59: 834–49
  • Pauly J E, Burns E R, Halberg F, Tsai S, Betterton H O, Scheving L E. Meal timing dominates the lighting regimen as a synchronizer of the eosinophil rhythm in mice. Acta Anat 1975; 93: 60–68
  • Abo T, Kawate T, Itoh K, Kumagai K. Circadian rhythms of human T, B and K cell traffic in the peripheral blood. J Immunol 1981; 126: 1360–3
  • Brown H E, Dougherty T F. The diurnal variation of blood leukocytes in normal and adrenalecto-mized mice. Endocrinology 1956; 58: 365–75
  • Elmadjian F, Pincus G. A study of the diurnal variations in circulating lymphocytes in normal and psychotic subjects. J Clin Endocrin 1946; 6: 287–94
  • Knapp M S, Pownall R. Lymphocytes are rhythmic: is this important?. Br Med J Clin Res 1984; 189: 1328–30
  • Soliman K FA, Walker C A. Effect of estrogen and progesterone on the circadian periodicity of blood cells. Proceedings of the XII International Conference of Chronobiology. II Ponte, Milano 1977; 239–46
  • Kawate T, Abo T, Hunuma S, Kumagai K. Studies on the bioperiodicity of the immune response. II. Co-variations of murine T and B cells and the role of corticosteroid. J Immunol 1981; 126: 1364–7
  • Miyawaki T, Taga K, Nagakoi T, Seki H, Suzuki Y, Taniguchi N. Circadian changes of T lymphocyte subsets in human peripheral blood. Clin Exp Immunol 1984; 55: 618–22
  • Gatti G, Del Ponte D, Cavallo R, et al. Circadian changes in human natural killer cell activity. Progr Clin Biol Res 1987; 227a: 399–409
  • Canon C, Levi F, Reinberg A, Mathe G. Circulating calla-positive lymphocytes exhibit circadian rhythms in man. LeukRes 1985; 9: 1539–46
  • Indiveri F, Pierri I, Rogna S, et al. Circadian variations of autologous mixed lymphocyte reactions and endogenous Cortisol. J Immunol Methods 1985; 82: 17–24
  • Lévi F, Canon C, Blum J P, Reinberg A, Mathe G. Large-amplityde circadian rhythm in helper: suppressor ratio of peripheral blood lymphocytes. Lancet 1983; i: 462–3
  • Lévi F, Canon C, Blum J P, Mechkouri M, Reinberg A, Mathe G. Circadian and/or circahemidian rhythms in nine lymphocyte related variables from peripheral blood of healthy subjects. J Immunol 1985; 134: 217–22
  • Fox R R, Laird C W. Diurnal variations in rabbits: hematological parameters. Am J Physiol 1970; 218: 1609–12
  • McKee L C, Ensign Johnson L, Lange R D. Circadian variations in reticulocyte counts and immuno-detectable erythropoietin titers (37997). Proc Soc Exp Biol Med 1974; 145: 1284–7
  • Lasky L C, Ascensao J, McCullough J, Zanjani E D. Steroid modulation of naturally occurring diurnal variation in circulating pluripotential haematopoietic cells (CFU-GEMM). Br J Haematol 1983; 55: 615–22
  • Ponassi A, Morra L, Bonanni F, Molinari A, Gigli G, Mercelli M, Sachetti C. Normal range of blood colony-forming cells (CFU-C) in humans: influence of experimental conditions, age, sex and diurnal variations. Blut 1979; 39: 257–63
  • Ross D D, Pollack A, Akman S A, Bachur N R. Diurnal variation of circulating human myeloid progenitor cells. Exp Hematol 1980; 8: 954–60
  • Verma D S, Fisher R, Spitzer G, Zander A R, McCredie K B, Dicke K A. Diurnal changes in circulating myeloid progenitor cells in man. Am J Hematology 1980; 9: 186–92
  • Meytes D MA, Powell W B, Ortega J A, Shore N A, Dukes P P. Constancy of erythroid burst forming unit (BFU-E) levels in the blood of hematologically normal individuals. Exp Hematol 1980; 8: 641–4
  • Aardal N P, Laerum O D. Circadian variations in mouse bone marrow. Exp Hematol 1983; 9: 792–801
  • Laerum O D, Aardal N P. Chronobiological aspects of bone marrow and blood cells. Eleventh International Congress of Anatomy: biological rhythms in structure and function. Alan R. Liss, New York 1981; 87–97
  • Laerum O D, Sletvold O, Riise T. Circadian and circannual variations of the cell cycle distribution in the mouse bone marrow. Chronbiol Int 1988; 5: 19–35
  • Ryabykh T P, Belyanchikova N I, Suslov A P. Ultradian biorhythms in mouse bone marrow. Translated from ByullEksp Biol Med 1984; 96: 106–8
  • Sletvold O, Laerum O D, Riise T. Rhythmic variations of different hemopoietic cell lines and maturation stages in aging mice. Mech Ageing Dev 1988; 42: 91–104
  • Sletvold O, Laerum O D. Multipotent stem cell (CFU-S) numbers and circadian variations in aging mice. Eur J Haematol 1988; 41: 230–6
  • Stoney P J, Halberg F, Simpson H W. Circadian variation in colony-forming ability of presumably intact murine bone marrow cells. Chronobiologia 1975; 2: 319–24
  • Aardal N P. Circannual variations of circadian periodicity in murine colony-forming cells (CFU-C). Exp Hematol 1984; 12: 61–67
  • Aardal N P, Laerum O D, Paukovits W R. Biological properties of partially purified granulocyte extract (chalone) assayed in soft agar culture. Virchows Arch (Cell Pathol) 1982; 38: 253–61
  • Bartlett P, Haus E, Tuason T, Sackett-Lundeen L, Lakatua D. Circadian rhythm in number of erythroid and granulocytic colony forming units in culture (ECFU-C and GCFU-C) in bone marrow of BDF1 male mice. Proceedings of XV International Conference of the International Society of Chronobiology, E Haus, H F Kabat. Karger, New York–Zurich 1982; 1–15
  • Sletvold O, Laerum O D, Riise T. Age-related differences and circadian and seasonal variations of myelopoietic progenitor cell (CFU-GM) numbers in mice. Eur J Haematol 1988; 40: 42–9
  • Mauer A M. Diurnal variation of proliferative activity in the human bone marrow. Blood 1965; 26: 1–7
  • Killmann S-Å, Cronkite E P, Fliedner T M, Bond V P. Mitotic indices of human bone marrow cells. 1. Number and cytologic distribution of mitosis. Blood 1962; 19: 743–50
  • Scheving L E, Pauly J E. Cellular mechanisms involving biorhythms with emphasis on those rhythms associated with the S and M stages of the cell cycle. Int J Chronobiol 1973; 1: 269–86
  • Moskalik K G. Diurnal rhythm of mitotic activity, DNA synthesis, and duration of mitosis in mouse bone marrow cells. Bull Exp biol (USSR) 1976; 81: 594–6
  • Pizzarello D J, Witcofski R L. A possible link between diurnal variations in radiation sensitivity and cell division in bone marrow of male mice. Radiology 1970; 97: 165–7
  • Scheving L E, Burns E R, Pauly J E, Tsai T H. Circadian variation in cell division of the mouse alimentary tract, bone marrow, and corneal epithelium, and its possible implication in cell kinetic and cancer chemotherapy. Anal Res 1978; 191: 479–86
  • Scheving L E, Scheving L A, Tsai T H, Pauly J E. Effect of fasting on circadian rhythmicity in deoxyribonucleic acid synthesis of several murine tissues. J Nutr 1984; 114: 2160–6
  • Sharkis S J, LoBue J, Alexander P, Jr., Rakowitz F, Weitz-Hamburger A, Gordon A S. Circadian variations in mouse hematopoiesis. II. Sex differences in mitotic indices of femoral diaphyseal marrow cells. Proc Soc Exptl Biol Med 1971; 138: 494–6
  • Tsai T H, Scheving L E, Scheving L A, Pauly J E. Sex differences in circadian rhythms of several variables in lymphoreticular organs, liver, kidney, and corneal epithelium in adult CD2F1 mice. Anal Rec 1985; 211: 263–70
  • Burns E R. Circadian biological time influences the effect adriamycin has on DNA synthesis in mouse bone marrow, ileum and tongue, but not Ehrlich ascites carcinoma. Oncology 1985; 42: 384–7
  • Burns E R, Schewing L E. Circadian optimization of treatment of L1210 leukemia with 1-β-D-arabinosyl cytosine, cyclophosphamide, vincristine and methylprednisolone. Chronobiologia 1980; 7: 41–51
  • Cardoso S S, Scheving L E, Halberg F. Mortality of mice as influenced by the hour of day of drug (ARA-C) administration. Pharmacologist 1970; 12: 312
  • Haus E, Halberg F, Scheving L E, et al. Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 1972; 77: 80–2
  • Haus E, Halberg F, Scheving L E, Simpson H. Chronotherapy of cancer–a critical evaluation. Int J Chronobiol 1979; 6: 67–107
  • Hrushesky W JM. Chemotherapy timing: an important variable in toxicity and response. Toxicity of chemotherapy, M C Perry, J W Yarbro. Griine and Stratton, Orlando 1984; 449–77
  • Hrushesky W JM. Bone marrow suppression from doxorubicin and cis-platinum is substantially dependent upon both circadian and circannual stage of administration. Proceedings of NYAS Conference on Cell Proliferation, Cancer and Cancer Therapy, (in press)
  • Hrushesky W, Lévi F, Theologides A, Frening D. Results of circadian time-qualified chemotherapy in patients with advanced ovarian cancer. Cancer Res 1981; 22: 472
  • Kühl J FK, Haus E, Halberg F, Scheving L E, Pauly J E, Cardoso S S, Rosene G. Experimental chronotherapy with ara-C; comparison of murine ara-C tolerance on differently timed treatment schedules. Chronobiologia 1974; 1: 316–7
  • Lévi F. Chronobiology in oncology in 1987–1988. Trends in chronobiology, W ThJM Hekkens, G A Kerkhof, W J Rietweld. Pergamon Press, New York 1988
  • Lévi F, Blazsek I, Ferle-Vidovic A. Circadian and seasonal rhythms in murine bone marrow colony-forming cells affect tolerance for the anticancer agent 4′-0-tetrahydropyranyladriamycin (THP). Exp Hematol 1988; 16: 696–701
  • Scheving L E, Haus E, Kühl J FW, Pauly J E, Halberg F, Cardoso S S. Close reproduction by different laboratories of characteristics of circadian rhythms in l-β-D-arabinofuranosylcytosine tolerance by mice. Cancer Res 1976; 36: 1133–7
  • Scheving L E, Burns E R, Pauly J E, Halberg F, Haus E. Survival and cure of leukemic mice after optimization of cancer treatment with cyclophosphamide and ara-C. Cancer Res 1977; 37: 3648–55
  • Scheving L E, Burns E R, Halberg F, Pauly J E. Combined chronochemotherapy of L1210 leukemic mice using 1-β-D-arabinofuranosylcytosine, cyclophosphamide, vincristine, synthesis rate at 24.00 hours compared to 12.00 hours (P < 0.05) and methylprednisolone, and cis-platinum. Chronobiologia 1980; 17: 33–40
  • Scheving L E, Burns E R, Pauly J E, Halberg F. Circadian bioperiodic response of mice bearing advanced L1210 leukemia to combination therapy with adriamycin and cyclophosphamide. Cancer Res 1980; 40: 1511–5
  • Scheving L E, Pauly J E, Tsai T H, Scheving L A. Chronobiology of cell proliferation. Implication for cancer chemotherapy. Biological rhythms and medicine, A Reinberg, M H Smolensky. Springer-Verlag, Berlin 1983; 79–130
  • Sletvold O, Laerum O D. Alterations of cell cycle distribution in the bone marrow of aging mice measured by flow cytometry. Exp Gerontol 1988; 23: 43–58
  • Smaaland R, Sletvold O, Bjerknes R, Lote K, Laerum O D. Circadian variations of cell cycle distribution in human bone marrow [Abstract]. XVIII International Conference, Leiden, The Netherlands. Chronobiologia 1987; 2: 239
  • Smaaland R, Lote K, Sletvold O, Bjerknes R, Laerum O D. Circadian stage dependent variations in the DNA synthesis-phase and G2/M-phase of human bone marrow. Proc Am Ass Cancer Res 1989; 30: 35
  • Smaaland R, Lote K, Sletvold O, Kamp D, Wiedemann G, Laerum O D. Rhythmen in Knochen-mark und Blut: Unterschiede wie Tag und Nacht. Dlsch med Wschr 1989; 114: 845–9
  • Smaaland R, Laerum O D, Lote K, Sletvold O, Sothern R B, Bjerknes R. DNA synthesis in human bone marrow is circadian stage dependent. Blood, (in press)
  • Vindelov L L. Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. Virch Arch B Cell Pathol 1977; 24: 227–42
  • Smaaland R, Svardal A M, Lote K, Laerum O D, Ueland P M. Glutathione in human bone marrow and its circadian stage relation to DNA synthesis. J Natl Cancer Inst, (in press)
  • Rivard G E, Infant-Rivard C, Hoyoux C, Champagne J. Maintenance chemotherapy for childhood acute lymphoblastic leukaemia: better in the evening. Lancet 1985; ii: 1264–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.