1,072
Views
27
CrossRef citations to date
0
Altmetric
TRENDS IN MOLECULAR MEDICINE

Tumor necrosis factor superfamily molecules in acute coronary syndromes

, , , , , , & show all
Pages 90-103 | Received 04 May 2010, Accepted 17 Aug 2010, Published online: 02 Nov 2010

References

  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.
  • Hansson GK. Inflammatory mechanisms in atherosclerosis. J Thromb Haemost. 2009;7 Suppl 1:328–31.
  • Packard RR, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin Immunopathol. 2009; 31:5–22.
  • Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82.
  • Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86: 515–81.
  • Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71.
  • Gronholdt ML, Dalager-Pedersen S, Falk E. Coronary atherosclerosis: determinants of plaque rupture. Eur Heart J. 1998;19 Suppl C:C24–9.
  • Panizzi P, Swirski FK, Figueiredo JL, Waterman P, Sosnovik DE, Aikawa E, . Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010;55:1629–38.
  • Helderman F, Segers D, de Crom R, Hierck BP, Poelmann RE, Evans PC, . Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol. 2007;18:527–33.
  • Koskinas KC, Chatzizisis YS, Baker AB, Edelman ER, Stone PH, Feldman CL. The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Curr Opin Cardiol. 2009;24: 580–90.
  • Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101: 598–603.
  • Takano M, Mizuno K, Okamatsu K, Yokoyama S, Ohba T, Sakai S. Mechanical and structural characteristics of vulnerable plaques: analysis by coronary angioscopy and intravascular ultrasound. J Am Coll Cardiol. 2001;38:99–104.
  • von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, Baumgart D, . Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo. J Am Coll Cardiol. 2001;37:1864–70.
  • Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol. 2007;18:492–9.
  • Chen L, Chester MR, Crook R, Kaski JC. Differential progression of complex culprit stenoses in patients with stable and unstable angina pectoris. J Am Coll Cardiol. 1996; 28:597–603.
  • Buffon A, Biasucci LM, Liuzzo G, D'Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.
  • Rioufol G, Finet G, Ginon I, Andre-Fouet X, Rossi R, Vialle E, . Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation. 2002;106:804–8.
  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–56.
  • Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 2004;15:353–66.
  • Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 2009;10:348–55.
  • Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol. 2009;Chapter 11: Unit11.9D
  • Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol. 2002;3:221–7.
  • Kasof GM, Lu JJ, Liu D, Speer B, Mongan KN, Gomes BC, . Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene. 2001;20:7965–75.
  • Ravi R, Bedi GC, Engstrom LW, Zeng Q, Mookerjee B, Gelinas C, . Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol. 2001;3:409–16.
  • Zheng Y, Ouaaz F, Bruzzo P, Singh V, Gerondakis S, Beg AA. NF-kappa B RelA (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. J Immunol. 2001;166:4949–57.
  • Cope AP, Londei M, Chu NR, Cohen SB, Elliott MJ, Brennan FM, . Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest. 1994;94:749–60.
  • Aukrust P, Lien E, Kristoffersen AK, Muller F, Haug CJ, Espevik T, . Persistent activation of the tumor necrosis factor system in a subgroup of patients with common variable immunodeficiency—possible immunologic and clinical consequences. Blood. 1996;87:674–81.
  • Fu YX, Chaplin DD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol. 1999;17: 399–433.
  • Yu Q, Gu JX, Kovacs C, Freedman J, Thomas EK, Ostrowski MA. Cooperation of TNF family members CD40 ligand, receptor activator of NF-kappa B ligand, and TNF-alpha in the activation of dendritic cells and the expansion of viral specific CD8+ T cell memory responses in HIV-1-infected and HIV-1-uninfected individuals. J Immunol. 2003;170:1797–805.
  • Darnay BG, Aggarwal BB. Signal transduction by tumour necrosis factor and tumour necrosis factor related ligands and their receptors. Ann Rheum Dis. 1999;58 Suppl 1:I2–I13.
  • Panes J, Gomollon F, Taxonera C, Hinojosa J, Clofent J, Nos P. Crohn's disease: a review of current treatment with a focus on biologics. Drugs. 2007;67:2511–37.
  • Girolomoni G, Pastore S, Albanesi C, Cavani A. Targeting tumor necrosis factor-alpha as a potential therapy in inflammatory skin diseases. Curr Opin Investig Drugs. 2002;3:1590–5.
  • Lamprecht P, Holle J, Gross WL. Update on clinical, pathophysiological and therapeutic aspects in ANCA-associated vasculitides. Curr Drug Discov Technol. 2009;6:241–51.
  • Aukrust P, Muller F, Lien E, Nordoy I, Liabakk NB, Kvale D, . Tumor necrosis factor (TNF) system levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy: persistent TNF activation is associated with virologic and immunologic treatment failure. J Infect Dis. 1999;179:74–82.
  • Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci. 2003;60:1623–35.
  • Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, . SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem. 2001; 276:47944–9.
  • Kamada Y, Takehara T, Hayashi N. Adipocytokines and liver disease. J Gastroenterol. 2008;43:811–22.
  • Yudkin JS. Inflammation, obesity, and the metabolic syndrome. Horm Metab Res. 2007;39:707–9.
  • Yndestad A, Damas JK, Geir EH, Holm T, Haug T, Simonsen S, . Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc Res. 2002;54:175–82.
  • Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract Rheumatol. 2006;2:602–10.
  • van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67:2–17.
  • Hodge-Dufour J, Marino MW, Horton MR, Jungbluth A, Burdick MD, Strieter RM, . Inhibition of interferon gamma induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor. Proc Natl Acad Sci U S A. 1998;95: 13806–11.
  • Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, . Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis. 2005;180:11–17.
  • Schreyer SA, Peschon JJ, LeBoeuf RC. Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem. 1996;271:26174–8.
  • Zhang L, Connelly JJ, Peppel K, Brian L, Shah SH, Nelson S, . Aging-related atherosclerosis is exacerbated by arterial expression of tumor necrosis factor receptor-1: evidence from mouse models and human association studies. Hum Mol Genet. 2010;19:2754–66.
  • Chandrasekharan UM, Mavrakis L, Bonfield TL, Smith JD, DiCorleto PE. Decreased atherosclerosis in mice deficient in tumor necrosis factor-alpha receptor-II (p75). Arterioscler Thromb Vasc Biol. 2007;27:e16–7.
  • van Wanrooij EJ, van Puijvelde GH, de Vos P, Yagita H, van Berkel TJ, Kuiper J. Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27:204–10.
  • Jeon HJ, Choi JH, Jung IH, Park JG, Lee MR, Lee MN, . CD137 (4-1BB) deficiency reduces atherosclerosis in hyperlipidemic mice. Circulation. 2010;121:1124–33.
  • Olofsson PS, Soderstrom LA, Wagsater D, Sheikine Y, Ocaya P, Lang F, . CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation. 2008; 117:1292–301.
  • Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, . Requirement for CD154 in the progression of atherosclerosis. Nat Med. 1999; 5:1313–6.
  • Lutgens E, Cleutjens KB, Heeneman S, Koteliansky VE, Burkly LC, Daemen MJ. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc Natl Acad Sci U S A. 2000;97:7464–9.
  • Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, . Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE−/− mice. Arterioscler Thromb Vasc Biol. 2006;26:2117–24.
  • Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, Dwyer D, . Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation. 2008;117:411–20.
  • Feng X, Li H, Rumbin AA, Wang X, La CA, Brechtelsbauer K, . ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J Lipid Res. 2007;48:794–805.
  • Munoz-Garcia B, Moreno JA, Lopez-Franco O, Sanz AB, Martin-Ventura JL, Blanco J, . Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice. Arterioscler Thromb Vasc Biol. 2009; 29:2061–8.
  • Sandberg WJ, Halvorsen B, Yndestad A, Smith C, Otterdal K, Brosstad FR, . Inflammatory interaction between LIGHT and proteinase-activated receptor-2 in endothelial cells: potential role in atherogenesis. Circ Res. 2009;104: 60–8.
  • Scholz H, Sandberg W, Damas JK, Smith C, Andreassen AK, Gullestad L, . Enhanced plasma levels of LIGHT in unstable angina: possible pathogenic role in foam cell formation and thrombosis. Circulation. 2005;112:2121–9.
  • Kim WJ, Bae EM, Kang YJ, Bae HU, Hong SH, Lee JY, . Glucocorticoid-induced tumour necrosis factor receptor family related protein (GITR) mediates inflammatory activation of macrophages that can destabilize atherosclerotic plaques. Immunology. 2006;119:421–9.
  • Aukrust P, Damas JK, Solum NO. Soluble CD40 ligand and platelets: self-perpetuating pathogenic loop in thrombosis and inflammation? J Am Coll Cardiol. 2004;43: 2326–8.
  • Klinger MH, Jelkmann W. Role of blood platelets in infection and inflammation. J Interferon Cytokine Res. 2002;22: 913–22.
  • von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100:27–40.
  • Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger AL III, Michelson AD. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004;43:2319–25.
  • Otterdal K, Smith C, Oie E, Pedersen TM, Yndestad A, Stang E, . Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes. Blood. 2006;108:928–35.
  • Sandberg WJ, Otterdal K, Gullestad L, Halvorsen B, Ragnarsson A, Froland SS, . The tumour necrosis factor superfamily ligand APRIL (TNFSF13) is released upon platelet activation and expressed in atherosclerosis. Thromb Haemost. 2009;102:704–10.
  • Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, . CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med. 2002; 8:247–52.
  • Lee WH, Kim SH, Lee Y, Lee BB, Kwon B, Song H, . Tumor necrosis factor receptor superfamily 14 is involved in atherogenesis by inducing proinflammatory cytokines and matrix metalloproteinases. Arterioscler Thromb Vasc Biol. 2001;21:2004–10.
  • Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, . Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci U S A. 1997; 94:1931–6.
  • Schonbeck U, Mach F, Sukhova GK, Atkinson E, Levesque E, Herman M, . Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. J Exp Med. 1999;189:843–53.
  • Damas JK, Otterdal K, Yndestad A, Aass H, Solum NO, Froland SS, . Soluble CD40 ligand in pulmonary arterial hypertension: possible pathogenic role of the interaction between platelets and endothelial cells. Circulation. 2004;110:999–1005.
  • Aukrust P, Muller F, Ueland T, Berget T, Aaser E, Brunsvig A, . Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation. 1999;100:614–20.
  • Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54:669–77.
  • Fouad HH, Al-Dera H, Bakhoum SW, Rashed LA, Sayed RH, Rateb MA, . Levels of sCD40 ligand in chronic and acute coronary syndromes and its relation to angiographic extent of coronary arterial narrowing. Angiology. 2010;61:567–73.
  • Yan JC, Wu ZG, Kong XT, Zong RQ, Zhan LZ. Relation between upregulation of CD40 system and complex stenosis morphology in patients with acute coronary syndrome. Acta Pharmacol Sin. 2004;25:251–6.
  • Ohashi Y, Kawashima S, Mori T, Terashima M, Ichikawa S, Ejiri J, . Soluble CD40 ligand and interleukin-6 in the coronary circulation after acute myocardial infarction. Int J Cardiol. 2006;112:52–8.
  • Wang Y, Li L, Tan HW, Yu GS, Ma ZY, Zhao YX, . Transcoronary concentration gradient of sCD40L and hsCRP in patients with coronary heart disease. Clin Cardiol. 2007;30:86–91.
  • Aggarwal A, Schneider DJ, Terrien EF, Sobel BE, Dauerman HL. Increased coronary arterial release of interleukin-1 receptor antagonist and soluble CD40 ligand indicative of inflammation associated with culprit coronary plaques. Am J Cardiol. 2004;93:6–9.
  • Ko YG, Jung JH, Park S, Choi E, Joung B, Hwang KC, . Inflammatory and vasoactive factors in the aspirate from the culprit coronary artery of patients with acute myocardial infarction. Int J Cardiol. 2006;112:66–71.
  • Tousoulis D, Antoniades C, Stefanadis C. Assessing inflammatory status in cardiovascular disease. Heart. 2007; 93:1001–7.
  • Heeschen C, Dimmeler S, Hamm CW, van den Brand MJ, Boersma E, Zeiher AM, . Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003;348:1104–11.
  • Kinlay S, Schwartz GG, Olsson AG, Rifai N, Sasiela WJ, Szarek M, . Effect of atorvastatin on risk of recurrent cardiovascular events after an acute coronary syndrome associated with high soluble CD40 ligand in the Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study. Circulation. 2004;110:386–91.
  • Antoniades C, Tousoulis D, Vasiliadou C, Stefanadi E, Marinou K, Stefanadis C. Genetic polymorphisms of platelet glycoprotein Ia and the risk for premature myocardial infarction: effects on the release of sCD40L during the acute phase of premature myocardial infarction. J Am Coll Cardiol. 2006;47:1959–66.
  • Morrow DA, Sabatine MS, Brennan ML, de Lemos JA, Murphy SA, Ruff CT, . Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J. 2008;29:1096–102.
  • Olenchock BA, Wiviott SD, Murphy SA, Cannon CP, Rifai N, Braunwald E, . Lack of association between soluble CD40L and risk in a large cohort of patients with acute coronary syndrome in OPUS TIMI-16. J Thromb Thrombolysis. 2008;26:79–84.
  • Ivandic BT, Spanuth E, Haase D, Lestin HG, Katus HA. Increased plasma concentrations of soluble CD40 ligand in acute coronary syndrome depend on in vitro platelet activation. Clin Chem. 2007;53:1231–4.
  • Zhang Y, Cao HJ, Graf B, Meekins H, Smith TJ, Phipps RP. CD40 engagement up-regulates cyclooxygenase-2 expression and prostaglandin E2 production in human lung fibroblasts. J Immunol. 1998;160:1053–7.
  • Deregibus MC, Buttiglieri S, Russo S, Bussolati B, Camussi G. CD40-dependent activation of phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell survival and in vitro angiogenesis. J Biol Chem. 2003; 278:18008–14.
  • Longo CR, Arvelo MB, Patel VI, Daniel S, Mahiou J, Grey ST, . A20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis. Circulation. 2003;108:1113–8.
  • Urbich C, Dernbach E, Aicher A, Zeiher AM, Dimmeler S. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation. 2002;106:981–6.
  • Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, . CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation. 2007;115:1571–80.
  • Bavendiek U, Zirlik A, LaClair S, MacFarlane L, Libby P, Schonbeck U. Atherogenesis in mice does not require CD40 ligand from bone marrow-derived cells. Arterioscler Thromb Vasc Biol. 2005;25:1244–9.
  • Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A, . Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med. 2010;207:391–404.
  • Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica. 2000;85:967–72.
  • Otterdal K, Andreassen AK, Yndestad A, Oie E, Sandberg WJ, Dahl CP, . Raised LIGHT levels in pulmonary arterial hypertension: potential role in thrombus formation. Am J Respir Crit Care Med. 2008;177:202–7.
  • Sandberg WJ, Yndestad A, Oie E, Smith C, Ueland T, Ovchinnikova O, . Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler Thromb Vasc Biol. 2006;26:857–63.
  • Jono S, Ikari Y, Shioi A, Mori K, Miki T, Hara K, . Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation. 2002;106:1192–4.
  • Golledge J, McCann M, Mangan S, Lam A, Karan M. Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis. Stroke. 2004;35:1636–41.
  • Nybo M, Rasmussen LM. The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review. Eur J Endocrinol. 2008; 159:603–8.
  • Omland T, Ueland T, Jansson AM, Persson A, Karlsson T, Smith C, . Circulating osteoprotegerin levels and long-term prognosis in patients with acute coronary syndromes. J Am Coll Cardiol. 2008;51:627–33.
  • Breuil V, Schmid-Antomarchi H, Schmid-Alliana A, Rezzonico R, Euller-Ziegler L, Rossi B. The receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) is a new chemotactic factor for human monocytes. FASEB J. 2003;17:1751–3.
  • Karlstrom E, Ek-Rylander B, Wendel M, Andersson G. RANKL induces components of the extrinsic coagulation pathway in osteoclasts. Biochem Biophys Res Commun. 2010;394:593–9.
  • Van CA, Golledge J. Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis. 2009;204:321–9.
  • Montecucco F, Steffens S, Mach F. The immune response is involved in atherosclerotic plaque calcification: could the RANKL/RANK/OPG system be a marker of plaque instability? Clin Dev Immunol. 2007;2007:75805.
  • Groeneweg M, Kanters E, Vergouwe MN, Duerink H, Kraal G, Hofker MH, . Lipopolysaccharide-induced gene expression in murine macrophages is enhanced by prior exposure to oxLDL. J Lipid Res. 2006;47: 2259–67.
  • Rus HG, Niculescu F, Vlaicu R. Tumor necrosis factor-alpha in human arterial wall with atherosclerosis. Atherosclerosis. 1991;89:247–54.
  • Kaartinen M, Penttila A, Kovanen PT. Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-alpha. Circulation. 1996;94:2787–92.
  • Wang S, Bray P, McCaffrey T, March K, Hempstead BL, Kraemer R. p75(NTR) mediates neurotrophin-induced apoptosis of vascular smooth muscle cells. Am J Pathol. 2000;157:1247–58.
  • Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000;101:2149–53.
  • Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2004;24:2137–42.
  • McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol. 2009;6:410–7.
  • Dixon WG, Watson KD, Lunt M, Hyrich KL, Silman AJ, Symmons DP. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56:2905–12.
  • Jacobsson LT, Turesson C, Gulfe A, Kapetanovic MC, Petersson IF, Saxne T, . Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J Rheumatol. 2005;32:1213–8.
  • Settergren M, Tornvall P. Does TNF-alpha blockade cause plaque rupture? Atherosclerosis. 2004;173:149.
  • Sato K, Niessner A, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM. TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J Exp Med. 2006;203:239–50.
  • Boos CJ, Balakrishnan B, Blann AD, Lip GY. The relationship of circulating endothelial cells to plasma indices of endothelial damage/dysfunction and apoptosis in acute coronary syndromes: implications for prognosis. J Thromb Haemost. 2008;6:1841–50.
  • Ankersmit HJ, Weber T, Auer J, Roth G, Brunner M, Kvas E, . Increased serum concentrations of soluble CD95/Fas and caspase 1/ICE in patients with acute angina. Heart. 2004;90:151–4.
  • Kim SH, Kang YJ, Kim WJ, Woo DK, Lee Y, Kim DI, . TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ J. 2004;68:396–9.
  • Blanco-Colio LM, Martin-Ventura JL, Munoz-Garcia B, Moreno JA, Meilhac O, Ortiz A, . TWEAK and Fn14. New players in the pathogenesis of atherosclerosis. Front Biosci. 2007;12:3648–55.
  • Yan J, Chen G, Gong J, Wang C, Du R. Upregulation of OX40-OX40 ligand system on T lymphocytes in patients with acute coronary syndromes. J Cardiovasc Pharmacol. 2009;54:451–5.
  • Dongming L, Zuxun L, Liangjie X, Biao W, Ping Y. Enhanced levels of soluble and membrane-bound CD137 levels in patients with acute coronary syndromes. Clin Chim Acta. 2010;411:406–10.
  • George J. Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat Clin Pract Cardiovasc Med. 2008;5:531–40.
  • Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. Clin Immunol. 2010;134:25–32.
  • Erbel C, Sato K, Meyer FB, Kopecky SL, Frye RL, Goronzy JJ, . Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Res Cardiol. 2007;102:123–32.
  • Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol. 2009;21:265–72.
  • Mittler RS, Foell J, McCausland M, Strahotin S, Niu L, Bapat A, . Anti-CD137 antibodies in the treatment of autoimmune disease and cancer. Immunol Res. 2004;29:197–208.
  • Pollara G, Katz DR, Chain BM. LIGHTing up dendritic cell activation: Immune regulation and viral exploitation. J Cell Physiol. 2005;205:161–2.
  • Wang L, Li D, Yang K, Hu Y, Zeng Q. Toll-like receptor-4 and mitogen-activated protein kinase signal system are involved in activation of dendritic cells in patients with acute coronary syndrome. Immunology. 2008;125:122–30.
  • Heikkila HM, Latti S, Leskinen MJ, Hakala JK, Kovanen PT, Lindstedt KA. Activated mast cells induce endothelial cell apoptosis by a combined action of chymase and tumor necrosis factor-alpha. Arterioscler Thromb Vasc Biol. 2008; 28:309–14.
  • Sun J, Sukhova GK, Wolters PJ, Yang M, Kitamoto S, Libby P, . Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med. 2007;13:719–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.