3,739
Views
208
CrossRef citations to date
0
Altmetric
TRENDS IN MOLECULAR MEDICINE

Sirtuin 1 in lipid metabolism and obesity

&
Pages 198-211 | Received 30 Aug 2010, Accepted 07 Dec 2010, Published online: 24 Feb 2011

References

  • Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.
  • Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA. 2004;291:2847–50.
  • Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol. 2005;6:298–305.
  • Grundy SM. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov. 2006;5:295–309.
  • Vazquez-Vela ME, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 2008;39:715–28.
  • Steppan CM, Lazar MA. The current biology of resistin. J Intern Med. 2004;255:439–47.
  • Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem. 2004;50:1511–25.
  • Wang P, Mariman E, Renes J, Keijer J. The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol. 2008;216:3–13.
  • Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, . Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 2008;7:496–507.
  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.
  • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, . The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97:5807–11.
  • Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, . A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A. 2000;97:6658–63.
  • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.
  • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004;101:15998–6003.
  • Lin SJ, Guarente L. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet. 2006;2:e33; author reply e4.
  • Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, . Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10:385–94.
  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular cell. 2004;16:93–105.
  • Sinclair DA, Oberdoerffer P. The ageing epigenome: damaged beyond repair? Ageing Res Rev. 2009;8:189–98.
  • Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta. 2010; 1804:1652–7.
  • Kim C, Park J, Kang E, Ahn C, Cha B, Lim S, . Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity. Obesity (Silver Spring). 2006;14:1164–71.
  • Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004;101:6659–63.
  • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289:2126–8.
  • Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science. 2005;310:1641.
  • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, . SirT1 regulates energy metabolism and response to caloric restriction in mice. PloS One. 2008;3:e1759.
  • Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009; 23:2812–7.
  • Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, . A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105:3374–9.
  • Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.
  • Goligorsky MS. SIRTing out the link between autophagy and ageing. Nephrol Dial Transplant. 2010;25:2434–6.
  • Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW, . Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys. 2010;500:203–9.
  • Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab. 2010;12 Suppl 2:4–14.
  • Rodriguez-Navarro JA, Cuervo AM. Autophagy and lipids: tightening the knot. Semin Immunopathol. 2010;32:343–53.
  • Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, . SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759–67.
  • Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, . SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008;8:333–41.
  • Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008;105:9793–8.
  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, . Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.
  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, . Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22.
  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, . Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450:712–6.
  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, . Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429:771–6.
  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, . Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–7.
  • Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature. 2006;444:868–74.
  • Hagopian K, Ramsey JJ, Weindruch R. Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice. Exp Gerontol. 2003;38:253–66.
  • Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, . Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008;22:1753–7.
  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, . AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458:1056–60.
  • Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, . Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010;11:213–9.
  • Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, . Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464:1313–9.
  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–8.
  • Escande C, Chini CC, Nin V, Dykhouse KM, Novak CM, Levine J, . Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J Clin Invest. 2010;120:545–58.
  • Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, . Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:1–8.
  • Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, . Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74:619–24.
  • Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, . SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285:8340–51.
  • van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis. 1991;14:407–20.
  • Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, . A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008; 456:269–73.
  • Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–38.
  • Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta. 2010;1804:1676–83.
  • Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007;28:91–106.
  • Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, . FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009;10:392–404.
  • Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83:841–50.
  • Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, . SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008; 283:20015–26.
  • Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007;104:12861–6.
  • Li S, Liu C, Li N, Hao T, Han T, Hill DE, . Genome-wide coactivation analysis of PGC-1alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 2008;8:105–17.
  • Feige JN, Auwerx J. DisSIRTing on LXR and cholesterol metabolism. Cell Metab. 2007;6:343–5.
  • Osborne TF, Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 2009;23:2578–91.
  • Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, . Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010;24:1403–17.
  • Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, . SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285:33959–70.
  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, . Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–63.
  • Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.
  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, . Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447:1116–20.
  • Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33–9.
  • Iyer A, Fairlie DP, Prins JB, Hammock BD, Brown L. Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol. 2010;6:71–82.
  • Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177:861–70.
  • Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, . SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol. 2009;29:1363–74.
  • Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, . SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;298:E419–28.
  • Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, . Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol. 2010;30:4712–21.
  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, . Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23:2369–80.
  • Barish GD, Downes M, Alaynick WA, Yu RT, Ocampo CB, Bookout AL, . A nuclear receptor atlas: macrophage activation. Mol Endocrinol. 2005;19:2466–77.
  • Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.
  • Odegaard JI, Chawla A. Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab. 2008;4:619–26.
  • Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.
  • Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10:355–61.
  • Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299:572–4.
  • Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, . Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A. 2007;104:4401–6.
  • Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R, . SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010;12:78–87.
  • Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, . Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8:347–58.
  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.
  • Cakir I, Perello M, Lansari O, Messier NJ, Vaslet CA, Nillni EA. Hypothalamic Sirt1 regulates food intake in a rodent model system. PloS One. 2009;4:e8322.
  • Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, . SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010;30:10220–32.
  • Dietrich MO, Antunes C, Geliang G, Liu ZW, Borok E, Nie Y, . Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J Neurosci. 2010;30:11815–25.
  • Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R. Central administration of resveratrol improves diet-induced diabetes. Endocrinology. 2009; 150:5326–33.
  • Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet. 2006;40:409–48.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, . Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043–5.
  • Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, . BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2:e377.
  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, . High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6:414–21.
  • Barnea M, Madar Z, Froy O. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology. 2009;150:161–8.
  • Wijnen H. Circadian rhythms. A circadian loop asSIRTs itself. Science. 2009;324:598–9.
  • Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006;125:497–508.
  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, . SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–28.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, . The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–40.
  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.
  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, . Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–4.
  • Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451:587–90.
  • Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451:583–6.
  • Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007;28:277–90.
  • Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, . SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007;9:1253–62.
  • Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, . Phosphorylation regulates SIRT1 function. PloS One. 2008;3:e4020.
  • Kang H, Jung JW, Kim MK, Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PloS One. 2009;4:e6611.
  • Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, . JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PloS One. 2009;4:e8414.
  • Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem. 2010;285:13223–32.
  • Kurabayashi N, Hirota T, Sakai M, Sanada K, Fukada Y. DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol. 2010;30:1757–68.
  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, . Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.
  • Camins A, Sureda FX, Junyent F, Verdaguer E, Folch J, Pelegri C, . Sirtuin activators: Designing molecules to extend life span. Biochim Biophys Acta. 2010;1799:740–9.
  • Zillikens MC, van Meurs JB, Rivadeneira F, Amin N, Hofman A, Oostra BA, . SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes. 2009;58:2828–34.
  • Peeters AV, Beckers S, Verrijken A, Mertens I, Roevens P, Peeters PJ, . Association of SIRT1 gene variation with visceral obesity. Hum Genet. 2008;124:431–6.
  • Johansson LE, Lindblad U, Larsson CA, Rastam L, Ridderstrale M. Polymorphisms in the adiponutrin gene are associated with increased insulin secretion and obesity. Eur J Endocrinol. 2008;159:577–83.
  • Gupta AK, Johnson WD. Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu. J Inflamm (Lond). 2010; 7:36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.