1,574
Views
10
CrossRef citations to date
0
Altmetric
TRENDS IN MOLECULAR MEDICINE

MAGED1: Molecular insights and clinical implications

, &
Pages 347-355 | Received 11 Jan 2011, Accepted 01 Mar 2011, Published online: 25 May 2011

References

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, . A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.
  • Goldman B, DeFrancesco L. The cancer vaccine roller coaster. Nat Biotechnol. 2009;27:129–39.
  • Brichard VG, Lejeune D. GSK's antigen-specific cancer immunotherapy programme: pilot results leading to phase III clinical development. Vaccine. 2007;25 Suppl 2:B61–71.
  • Francois V, Ottaviani S, Renkvist N, Stockis J, Schuler G, Thielemans K, . The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res. 2009;69:4335–45.
  • Yang B, O’Herrin SM, Wu J, Reagan-Shaw S, Ma Y, Bhat KM, . MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 2007;67: 9954–62.
  • Liu W, Cheng S, Asa SL, Ezzat S. The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res. 2008 ;68:8104–12.
  • Marcar L, Maclaine NJ, Hupp TR, Meek DW. Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin. Cancer Res. 2010;70:10362–70.
  • Doyle JM, Gao J, Wang J, Yang M, Potts PR. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell. 2010;39:963–74.
  • Masuda Y, Sasaki A, Shibuya H, Ueno N, Ikeda K, Watanabe K. Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. J Biol Chem. 2001;276:5331–8.
  • Sasaki A, Masuda Y, Iwai K, Ikeda K, Watanabe K. A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1. J Biol Chem. 2002; 277:22541–6.
  • Wang X, Tang J, Xing L, Shi G, Ruan H, Gu X, . Interaction of MAGED1 with nuclear receptors affects circadian clock function. EMBO J. 2010;29:1389–400.
  • Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, . NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron. 2000;27:279–88.
  • Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol. 2002;67:203–33.
  • Salehi AH, Xanthoudakis S, Barker PA. NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem. 2002;277:48043–50.
  • Williams ME, Strickland P, Watanabe K, Hinck L. UNC5H1 induces apoptosis via its juxtamembrane region through an interaction with NRAGE. J Biol Chem. 2003;278:17483–90.
  • Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol. 2009;41:487–93.
  • Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990;4:61–85.
  • Leung-Hagesteijn C, Spence AM, Stern BD, Zhou Y, Su MW, Hedgecock EM, . UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell. 1992;71:289–99.
  • Sasaki A, Hinck L, Watanabe K. RumMAGE-D the members: structure and function of a new adaptor family of MAGE-D proteins. J Recept Signal Transduct Res. 2005;25:181–98.
  • Parkhurst CN, Zampieri N, Chao MV. Nuclear localization of the p75 neurotrophin receptor intracellular domain. J Biol Chem. 2010;285:5361–8.
  • Kendall SE, Battelli C, Irwin S, Mitchell JG, Glackin CA, Verdi JM. NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein signaling cascade. Mol Cell Biol. 2005;25:7711–24.
  • Wen CJ, Xue B, Qin WX, Yu M, Zhang MY, Zhao DH, . hNRAGE, a human neurotrophin receptor interacting MAGE homologue, regulates p53 transcriptional activity and inhibits cell proliferation. FEBS Lett. 2004; 564:171–6.
  • Tian XX, Rai D, Li J, Zou C, Bai Y, Wazer D, . BRCA2 suppresses cell proliferation via stabilizing MAGE-D1. Cancer Res. 2005;65:4747–53.
  • Monte M, Simonatto M, Peche LY, Bublik DR, Gobessi S, Pierotti MA, . MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc Natl Acad Sci USA. 2006;103:11160–5.
  • Sepp KJ, Hong P, Lizarraga SB, Liu JS, Mejia LA, Walsh CA, . Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genet. 2008;4:e1000111.
  • Nishimura I, Shimizu S, Sakoda JY, Yoshikawa K. Expression of Drosophila MAGE gene encoding a necdin homologous protein in postembryonic neurogenesis. Gene Expr Patterns. 2007;7:244–51.
  • Nishimura I, Sakoda JY, Yoshikawa K. Drosophila MAGE controls neural precursor proliferation in postembryonic neurogenesis. Neuroscience. 2008;154:572–81.
  • Isabel G, Pascual A, Preat T. Exclusive consolidated memory phases in Drosophila. Science. 2004;304:1024–7.
  • Davis RL. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci. 2005;28:275–302.
  • Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, . Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 2002;21: 3009–18.
  • Moreno E, Yan M, Basler K. Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol. 2002;12:1263–8.
  • Kanda H, Igaki T, Kanuka H, Yagi T, Miura M. Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J Biol Chem. 2002;277:28372–5.
  • Kauppila S, Maaty WS, Chen P, Tomar RS, Eby MT, Chapo J, . Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene. 2003;22:4860–7.
  • Selkoe DJ. Alzheimer's disease is a synaptic failure. Science. 2002;298:789–91.
  • Brouwers N, Sleegers K, Van Broeckhoven C. Molecular genetics of Alzheimer's disease: an update. Ann Med. 2008;40:562–83.
  • Fujii T, Kunugi H. p75NTR as a therapeutic target for neuropsychiatric diseases. Curr Mol Pharmacol. 2009;2: 70–6.
  • Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, . Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J Clin Invest. 1997;100:2333–40.
  • Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ. Beta-amyloid(1-42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci. 2008;28:3941–6.
  • Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–8.
  • Peng S, Wuu J, Mufson EJ, Fahnestock M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol. 2004;63:641–9.
  • Pedraza CE, Podlesniy P, Vidal N, Arevalo JC, Lee R, Hempstead B, . Pro-NGF isolated from the human brain affected by Alzheimer's disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol. 2005;166:533–43.
  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102: 15545–50.
  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA. 2004;101:2173–8.
  • Reddy EM, Chettiar ST, Kaur N, Ganeshkumar R, Shepal V, Shanbhag NC, . Dlxin-1, a member of MAGE family, inhibits cell proliferation, invasion and tumorigenicity of glioma stem cells. Cancer Gene Ther. 2011;18:206–18.
  • Berenjeno IM, Nunez F, Bustelo XR. Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases. Oncogene. 2007;26:4295–305.
  • Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L. Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene. 2006;25: 5391–404.
  • Boylan KL, Gosse MA, Staggs SE, Janz S, Grindle S, Kansas GS, . A transgenic mouse model of plasma cell malignancy shows phenotypic, cytogenetic, and gene expression heterogeneity similar to human multiple myeloma. Cancer Res. 2007;67:4069–78.
  • Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, . Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68:6779–88.
  • Chung FY, Cheng TL, Chang HJ, Chiu HH, Huang MY, Chang MS, . Differential gene expression profile of MAGE family in taiwanese patients with colorectal cancer. J Surg Oncol. 2010;102:148–53.
  • Li M, Lin YM, Hasegawa S, Shimokawa T, Murata K, Kameyama M, . Genes associated with liver metastasis of colon cancer, identified by genome-wide cDNA microarray. Int J Oncol. 2004;24:305–12.
  • Ringwald M, Iyer V, Mason JC, Stone KR, Tadepally HD, Kadin JA, . The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res. 2011;39(Database issue):D849–55.
  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, . The knockout mouse project. Nat Genet. 2004;36:921–4.
  • Ptitsyn AA, Zvonic S, Conrad SA, Scott LK, Mynatt RL, Gimble JM. Circadian clocks are resounding in peripheral tissues. PLoS Comput Biol. 2006;2:e16.
  • Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, . A transcription factor response element for gene expression during circadian night. Nature. 2002; 418:534–9.
  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, . Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103:1009–17.
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003;302:255–9.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, . Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043–5.
  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.
  • Herzog ED. Neurons and networks in daily rhythms. Nat Rev Neurosci. 2007;8:790–802.
  • Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, . Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell. 2001;105:683–94.
  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, . mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205.
  • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, . Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999;398:627–30.
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, . The orphan nuclear receptor REV-ER Balpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110: 251–60.
  • Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, . System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37:187–92.
  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, . Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324: 651–4.
  • Albrecht U, Eichele G. The mammalian circadian clock. Curr Opin Genet Dev. 2003;13:271–7.
  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, . A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43:527–37.
  • Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, . The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci. 2000; 20:8138–43.
  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep. 2005;28:395–409.
  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, . An hPer2 phosphorylation site mutation infamilial advanced sleep phase syndrome. Science. 2001;291: 1040–3.
  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, . Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640–4.
  • Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptacek LJ. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell. 2007;128:59–70.
  • Sofroniew MV, Isacson O, O’Brien TS. Nerve growth factor receptor immunoreactivity in the rat suprachiasmatic nucleus. Brain Res. 1989;476:358–62.
  • Kiss J, Patel AJ, Halasz B. Colocalization of NGF receptor with VIP in rat suprachiasmatic neurones. Neuroreport. 1993;4:1315–8.
  • Bina KG, Rusak B. Nerve growth factor phase shifts circadian activity rhythms in Syrian hamsters. Neurosci Lett. 1996;206:97–100.
  • Liang FQ, Allen G, Earnest D. Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light. J Neurosci. 2000;20:2978–87.
  • Akashi M, Takumi T. The orphan nuclear receptor ROR[alpha] regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol. 2005;12: 441–8.
  • Rajaratnam SM, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G, . Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet. 2009; 373:482–91.
  • Waterhouse J, Reilly T, Atkinson G, Edwards B. Jet lag: trends and coping strategies. Lancet. 2007;369:1117–29.
  • Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, . Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci USA. 2010;107:15240–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.