374
Views
45
CrossRef citations to date
0
Altmetric
Original Article

Imprinted genes and mental dysfunction

, &
Pages 428-436 | Published online: 08 Jul 2009

References

  • Barlow D P. Gametic imprinting in mammals. Science 1995; 270: 1610–3
  • Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–5
  • Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nut Rev Genet 2001; 2: 21–32
  • Keverne E B. Genomic imprinting in the brain. Curr Opin Neurobiol 1997; 7: 463–8
  • Morison I M, Paton C J, Cleverley S D. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res 2001; 29: 275–6, (URL http://cancer.otago.ac.nz/IGC/Web/home.html)
  • Falls J G, Pulford D J, Wylie A A, Jirtle R L. Genomic imprinting: implications for human disease. Am J Path 1999; 154: 635–47
  • McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37: 179–83
  • Isles A R, Wilkinson L S. Imprinted genes, cognition and behaviour. Trends Cogn Sci 2000; 4: 309–18
  • Owen M J, Cardno A G. Psychiatric genetics: progress, problems, and potential. Lancet 1999; 354(Suppl 1)SI114
  • Chandley A C. On the parental origin of de novo mutation in man. J Med Genet 1991; 28: 217–23
  • Timchenko L T, Caskey C T. Trinucleotide repeat disorders in humans: discussions of mechanisms and medical issues. Faseb J 1996; 10: 1589–97
  • Angelman H. Puppet children. Developmental Medicine and Child Neurology 1965; 7: 681–8
  • Laan L A, v Haeringen A, Brouwer O F. Angelman syndrome: a review of clinical and genetic aspects. Clin Neurol Neurosurg 1999; 101: 161–70
  • Summers J A, Feldman M A. Distinctive pattern of behavioral functioning in Angelman syndrome. Am J Ment Retard 1999; 104: 376–84
  • Jay V, Becker L E, Chan F W, Perry T L, Sr. Puppet-like syndrome of Angelman: a pathologic and neurochemical study. Neurology 1991; 41: 416–22
  • Kyriakides T, Hallam L A, Hockey A, Silberstein P, Kakulas B A. Angelman's syndrome: a neuropathological study. Acta Neuropathol 1992; 83: 675–8
  • Mann M R, Bartolomei M S. Towards a molecular understanding of Prader-Willi and Angelman syndromes. Hum Mol Genet 1999; 8: 1867–73
  • Cassidy S, Dykens E, Williams C. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 2000; 97: 136–46
  • Matsuura T, Sutcliffe J S, Fang P, Galjaard R J, Jiang Y H, Benton C S, et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nut Genet 1997; 15: 74–7
  • Kishino Tea. Ube3a/E6-AP mutations cause Angelman's Syndrome. Nat Genet 1997; 15: 70–3
  • Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6–AP, is imprinted in brain. Nat Genet 1997; 17: 14–5
  • Vu T H, Hoffman A R. Imprinting of the Angelman Syndrome gene Ube3a is restricted to brain. Nat Genet 1997; 17: 12–3
  • Jiang Y H, Armstrong D, Albrecht U, Atkins C M, Noebels J L, Eichele G, et al. Mutation of the angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 1998; 21: 799–811
  • Hegde A N, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain D G, et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 1997; 89: 115–26
  • Moncla A, Malzac P, Voelckel M A, Auquier P, Girardot L, Mattei M G, et al. Phenotype-genotype correlation in 20 deletion and 20 non-deletion Angelman syndrome patients. Eur J Hum Genet 1999; 7: 131–9
  • Prader A, Labhart A, Willi H. A syndrome of adiposity, cryptorchism, growth retardation and oligophrenia in the newborn after myotonic state (in German). Schweiz Med Wochenschr 1956; 86: 1260–1
  • Cassidy S B. Prader-Willi syndrome. J Med Genet 1997; 34: 917–23
  • Lee S, Wevrick R. Identification of novel imprinted transcripts in the Prader-Willi syndrome and Angelman syndrome deletion region: further evidence for regional imprinting control. Am J Hum Genet 2000; 66: 848–58
  • Tsai T F, Jiang Y H, Bressler J, Armstrong D, Beaudet A L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum Mol Genet 1999; 8: 1357–64
  • Jong M T, Carey A H, Caldwell K A, Lau M H, Handel M A, Driscoll D J, et al. Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet 1999; 8: 795–803
  • Yang T, Adamson T E, Resnick J L, Leff S, Wevrick R, Francke U, et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nut Genet 1998; 19: 25–31
  • Tsai T F, Armstrong D, Beaudet A L. Necdin-deficient mice do not show lethality or the obesity and infertility of Prader-Willi Syndrome. Nut Genet 1999; 22: 15–6
  • Muscatelli F, Abrous D N, Massacrier A, Boccaccio I, Le Moal M, Cau P, et al. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet 2000; 9: 3101–10
  • Cassidy S B, Forsythe M, Heeger S, Nicholls R D, Schork N, Benn P, et al. Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 1997; 68: 433–40
  • Miller L, Angulo M, Price D, Taneja S. MR of the pituitary in patients with Prader-Willi syndrome: size determination and imaging findings. Pediatr Radiol 1996; 26: 43–7
  • Curfs L M, Wiegers A M, Sommers J R, Borghgraef M, Fryns J P. Strengths and weaknesses in the cognitive profile of youngsters with Prader-Willi syndrome. Clin Genet 1991; 40: 430–4
  • Clarke D J. Prader-Willi syndrome and psychoses. Br J Psychiatry 1993; 163: 680–4
  • Freedman R, Coon H, Myles-Worsley M, Orr-Urtrqer A, Olincy A, Davis A, et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–92
  • Keverne E B. GABA-ergic neurons and the neurobiology of schizophrenia and other psychoses. Brain Res Bull 1999; 48: 467–73
  • Robbins T W. Integrating the neurobiological and neuro-psychological dimensions of autism. Autism as an executive disorder, J Russell. Oxford University Press, Oxford 1997
  • Happe F, Frith U. The neuropsychology of autism. Brain 1996; 119: 1377–400
  • Courchesne E, Yeung-Courchesne R, Press G A, Hesselink J R, Jernigan T L. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988; 318: 1349–54
  • Ritvo E R, Freeman B J, Scheibel A B, Duong T, Robinson H, Guthrie D, et al. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 1986; 143: 862–6
  • Courchesne E, Press G A, Yeung-Courchesne R. Parietal lobe abnormalities detected with MR in patients with infantile autism. AIR Am J Roentgenol 1993; 160: 387–93
  • Raymond G V, Bauman M L, Kemper T L. Hippocampus in autism: a Golgi analysis. Acta Neuropathol 1996; 91: 117–9
  • Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, et al. Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995; 25: 1–18
  • Courchesne E. Brainstem, cerebellar and limbic neuro-anatomical abnormalities in autism. Curr Opin Neurobiol 1997; 7: 269–78
  • Salmon B, Hallmayer J, Rogers T, Kalaydjieva L, Petersen P B, Nicholas P, et al. Absence of linkage and linkage disequilibrium to chromosome 1Sqll-q13 markers in 139 multiplex families with autism. Am J Med Genet 1999; 88: 551–6
  • Cook E H, Lindgren V, Leventhal B L, Courchesne R, Lincoln A, Shulman C, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997; 60: 928–34
  • Schroer R J, Phelan M C, Michaelis R C, Crawford E C, Skinner S A, Cuccaro M, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 1998; 76: 327–36
  • Repetto G M, White L M, Bader P J, Johnson D, Knoll J H. Interstitial duplications of chromosome region 15q11q13: clinical and molecular characterization. Am J Med Genet 1998; 79: 82–9
  • Kerbeshian J, Burd L, Randall T, Martsolf J, Jalal S. Autism, profound mental retardation and atypical bipolar disorder in a 33-year-old female with a deletion of 15q12. J Ment Defic Res 1990; 34: 205–10
  • Veenstra-VanderWeele J, Gonen D, Leventhal B L, Cook E H, Jr. Mutation screening of the UBE3AE6-AP gene in autistic disorder. Mol Psychiatry 1999; 4: 64–7
  • Cook E H, Jr, Courchesne R Y, Cox N J, Lord C, Gonen D, Guter S J, et al. Linkage-disequilibrium mapping of autistic disorder, with 15q 11–13 markers. Am J Hum Genet 1998; 62: 1077–83
  • Martin E R, Menold M M, Wolpert C M, Bass M P, Donnelly S L, Ravan S A, et al. Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 2000; 96: 43–8
  • Meguro M, Mitsuya K, Sui H, Shigenami K, Kugoh H, Nakao M, et al. Evidence for uniparental, paternal expression of the human GABA(A) receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet 1997; 6: 2127–33
  • Gabriel J M, Higgins M J, Gebuhr T C, Shows T B, Saitoh S, Nicholls R D. A model system to study genomic imprinting of human genes. Proc Natl Acad Sci USA 1998; 95: 14857–62
  • A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Hum Mol Genet 1998; 7: 571–8
  • Barrett S, Beck J C, Bernier R, Shigenami K, Kugoh H, Nakao M, et al. An autosomal genomic screen for autism. Collaborative linkage study of autism. Am J Med Genet 1999; 88: 609–15
  • Philippe A, Martinez M, Guilloud-Bataille M, Gillberg C, Rastam M, Sponheim E, et al. Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet 1999; 8: 805–12
  • Ashley-Koch A, Wolpert C M, Menold M M, Zaeem L, Basu S, Donnelly S L, et al. Genetic studies of autistic disorder and chromosome 7. Genomics 1999; 61: 227–36
  • Kobayashi S, Kohda T, Miyoshi N, Kuroiwa Y, Aisaka K, Tsutsumi O, et al. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum Mol Genet 1997; 6: 781–6
  • Blagitko N, Schulz U, Schinzel A A, Ropers H H, Kalscheuer V M. gamma2-COP, a novel imprinted gene on chromosome 7q32, defines a new imprinting cluster in the human genome. Hum Mol Genet 1999; 8: 2387–96
  • Yamasaki K, Hayashida S, Miura K, Masuzaki H, Ishimaru T, Niikawa N, et al. The novel gene, gamma2-COP (COPGZ), in the 7q32 imprinted domain escapes genomic imprinting. Genomics 2000; 68: 330–5
  • Lefebvre L, Viville S, Barton S C, Ishino F, Keverne E B, Surani M A. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 1998; 20: 163–9
  • Robbins T W, Jones G H, Wilkinson L S. Behavioral and neurochemical effects of early social deprivation in the rat. J Psychopharmacology 1996; 10: 39–47
  • Cattanach B M, Beechey C V. Genomic imprinting in the mouse: possible final analysis. Genomic imprinting, W Reik, A Surani. Oxford University Press, Oxford 1997; 118–45
  • Barrow J R, Stadler H S, Capecchi M R. Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 2000; 127: 933–44
  • Rossel M, Capecchi M R. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 1999; 126: 5027–40
  • Stromland K, Nordin V, Miller M, Akerstrom B, Gillberg C. Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol 1994; 36: 351–6
  • Ingram J L, Stodgell C J, Hyman S L, Figlewicz D A, Weitkamp L R, Rodier P M. Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 2000; 62: 393–405
  • Mark M, Lufkin T, Vonesch J L, Ruberte E, Olivo J C, Dolle P, et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 1993; 119: 319–38
  • Carpenter E M, Goddard J M, Chisaka O, Manley N R, Capecchi M R. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 1993; 118: 1063–75
  • Skuse D H, James R S, Bishop D V, Coppin B, Dalton P, Aamodt-Leeper G, et al. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 1997; 387: 705–8
  • Scourfield J, McGuffin P, Thapar A. Genes and social skills. Bioessays 1997; 19: 1125–7
  • Skuse D H. Imprinting, the X-chromosome, and the male brain: explaining sex differences in the liability to autism. Pediatr Res 2000; 47: 9–16
  • McLennan J D, Lord C, Schopler E. Sex differences in higher functioning people with autism. J Autism Dev Disord 1993; 23: 217–27
  • Donnelly S L, Wolpert C M, Menold M M, Bass M P, Gilbert J R, Cuccaro M L, et al. Female with autistic disorder and monosomy X (Turner syndrome): parent- of-origin effect of the X chromosome. Am J Med Genet 2000; 96: 312–6
  • Thomas N S, Sharp A J, Browne C E, Skuse D, Hardie C, Dennis N R. Xp deletions associated with autism in three females. Hum Genet 1999; 104: 43–8
  • Craddock N, Jones I. Genetics of bipolar disorder. J Med Genet 1999; 36: 585–94
  • Ginns E I, Ott J, Egeland J A, Allen C R, Fann C S, Pads D L, et al. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nat Genet 1996; 12: 431–5
  • McMahon F J, Stine O C, Meyers D A, Simpson S G, DePaulo J R. Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 1995; 56: 1277–86
  • Gershon E S, Badner J A, Detera-Wadleigh S D, Ferraro T N, Berrettini W H. Maternal inheritance and chromosome 18 allele sharing in unilineal bipolar illness pedigrees. Am J Med Genet 1996; 67: 202–7
  • Kornberg J R, Brown J L, Sadovnick A D, Remick R A, Keck P E, Jr., McElroy S L, et al. Evaluating the parent-of-origin effect in bipolar affective disorder. Is a more penetrant subtype transmitted paternally. J Affect Disord 2000; 59: 183–92
  • Kato T, Winokur G, Coryell W, Keller M B, Endicott J, Rice J. Parent-of-origin effect in transmission of bipolar disorder. Am J Med Genet 1996; 67: 546–50
  • McMahon F J, Chen Y S, Patel S, Kokoszka J, Brown M D, Torroni A, et al. Mitochondrial DNA sequence diversity in bipolar affective disorder. Am J Psychiatry 2000; 157: 1058–64
  • Kirk R, Furlong R A, Amos W, Cooper G, Rubinsztein J S, Walsh C, et al. Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder. Am J Hum Genet 1999; 65: 508–18
  • Stine O C, Xu J, Koskela R, McMahon F J, Gschwend M, Friddle C, et al. Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet 1995; 57: 1384–94
  • Nothen M M, Cichon S, Rohleder H, Hemmer S, Franzek E, Fritze J, et al. Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families. Mol Psychiatry 1999; 4: 76–84
  • McMahon F J, Hopkins P J, Xu J, McInnis M G, Shaw S, Cardon L, et al. Linkage of bipolar affective disorder to chromosome 18 markers in a new pedigree series. Am J Hum Genet 1997; 61: 1397–404
  • Kosaki K, Suzuki T, Kosaki R, Yoshihashi H, Itoh M, Goto Y, et al. Human homolog of the mouse imprinted gene Impact resides at the pericentric region of chromosome within the critical region for bipolar affective disorder. Mol Psychiatry 2001; 6: 87–91
  • Okamura K, Hagiwara-Takeuchi Y, Li T, Vu T H, Hirai M, Hattori M, et al. Comparative genome analysis of the mouse imprinted gene impact and its nonimprinted human homolog IMPACT: toward the structural basis for species-specific imprinting. Genome Res 2000; 10: 1878–89
  • Pekkarinen P, Terwilliger J, Bredbacka P E, Lonnqvist J, Peltonen L. Evidence of a predisposing locus to bipolar disorder on Xq24-q27.1 in an extended Finnish pedigree. Genome Res 1995; 5: 105–15
  • Craddock N, Lendon C. Chromosome Workshop: chromosomes 11, 14, and 15. Am J Med Genet 1999; 88: 244–54
  • Craddock N, Owen M. Chromosomal aberrations and bipolar affective disorder. Br J Psychiatry 1994; 164: 507–12
  • Robertson M M. Tourette syndrome, associated conditions and the complexities of treatment. Brain 2000; 123(Pt 3)425–62
  • The Tourette Syndrome Association International Consortium for Genetics. A complete genome screen in sib pairs affected by Gilles de la Tourette syndrome. Am J Hum Genet 1999; 65: 1428–36
  • Barr C L, Wigg K G, Pakstis A J, Kurlan R, Pads D, Kidd K K, et al. Genome scan for linkage to Gilles de la Tourette syndrome. Am J Med Genet 1999; 88: 437–45
  • Lichter D G, Jackson L A, Schachter M. Clinical evidence of genomic imprinting in Tourette's syndrome. Neurology 1995; 45: 924–8
  • Caron C, Brassard A, Merette C. Genomic imprinting in Tourette's syndrome. Neurology 1997; 49: 637–8
  • Eapen V, O'Neill J, Curling H M, Robertson M M. Sex of parent transmission effect in Tourette's syndrome: evidence for earlier age at onset in maternally transmitted cases suggests a genomic imprinting effect. Neurology 1997; 48: 934–7
  • Ross C A, McInnis M G, Margolis R L, Li S H. Genes with triplet repeats: candidate mediators of neuropsychiatric disorders. Trends Neurosci 1993; 16: 254–60
  • Eaton W W, Kessler R C, Wittchen H U, Magee W J. Panic and panic disorder in the United States. Am J Psychiatry 1994; 151: 413–20
  • Haghighi F, Fyer A J, Weissman M M, Knowles J A, Hodge S E. Parent-of-origin effect in panic disorder. Am J Med Genet 1999; 88: 131–5
  • Battaglia M, Bertella S, Bajo S, Binaghi F, Ogliari A, Bellodi L. Assessment of parent-of-origin effect in families unlineally affected with panic disorder-agoraphobia. J Psychiatr Res 1999; 33: 37–9
  • Crowe R R, Goedken R, Samuelson S, Wilson R, Nelson J, Noyes R. Genomewide survey of panic disorder. Am J Med Genet 2001; 105: 105–9
  • MacKinnon D F, Xu J, McMahon F J, Simpson S G, Stine O C, McInnis M G, et al. Bipolar disorder and panic disorder in families: an analysis of chromosome 18 data. Am J Psychiatry 1998; 155: 829–31
  • Ohara K, Xu H, Mori N, Suzuki Y, Xu D, Ohara K, et al. Anticipation and imprinting in schizophrenia. Biol Psychiatry 1997; 42: 760–6
  • Bunzel R, Blumcke I, Cichon S, Normann S, Schramm J, Propping P, et al. Polymorphic imprinting of the serotonin-2A (5–HT2A) receptor gene in human adult brain. Brain Res Mol Brain Res 1998; 59: 90–2
  • Williams J, McGuffin P, Nothen M, Owen M J. Meta-analysis of association between the 5-HT2a receptor T102C polymorphism and schizophrenia. EMASS Collaborative Group. European Multicentre Association Study of Schizophrenia. Lancet 1997; 349: 1221
  • Husted J, Scutt L E, Bassett A S. Paternal transmission and anticipation in schizophrenia. Am J Med Genet 1998; 81: 156–62
  • Stober G, Haubitz I, Franzek E, Beckmann H. Parent-of-origin effect and evidence for differential transmission in periodic catatonia. Psychiatr Genet 1998; 8: 213–9
  • Paterson A D. Analysis of parental-origin effects in linkage data. Mol Psychiatry 2000; 5: 125–7
  • Strauch K, Fimmers R, Wienker T F, Baur M P, Cichon S, Propping P, et al. Strauch et al reply. Mol Psychiatry 2000; 5: 126–7
  • Hurst L D, McVean G T. Do we understand the evolution of genomic imprinting. Curr Opin Genet Dev 1998; 8: 701–8
  • Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7: 45–9
  • Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 1991; 64: 1045–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.