333
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Oncolytic viruses as therapeutic agents

Pages 291-304 | Published online: 08 Jul 2009

References

  • De Page N G. Sulla scomparsa di un enorme cancro vegetante del callo dell'utero senza cura chirurgica. Ginecologia 1912; 9: 82–8
  • Webb H E. Viruses in the treatment of cancer. Lancet 1970; 1: 1206–8
  • Smith R R, Huebner R J, Rowe W P, Schatten W E, Thomas L B. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 1956; 9: 1211–8
  • Asada T. Treatment of human cancer with mumps virus. Cancer 1974; 34: 1907–28
  • Gross S. Measles and leukaemia. Lancet 1971; 1: 397–8
  • Taylor M W, Cordell B, Souhrada M, Prather S. Viruses as an aid to cancer therapy: regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proc Natl Acad Sci USA 1971; 68: 836–40
  • Reichard K W, Lorence R M, Cascino C J, Peeples M E, Walter R J, Fernando M B, et al. Newcastle disease virus selectively kills human tumor cells. J Surg Res 1992; 52: 448–53
  • Cassell W, Garrett R E. Newcastle disease virus as an antineoplastic agent. Cancer 1965; 18: 863
  • Lorence R M, Rood P A, Kelley K W. Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-alpha and augmentation of its cytotoxicity. J Natl Cancer Inst 1988; 80: 1305–12
  • Cassel W A, Murray D R, Phillips H S. A phase II study on the postsurgical management of Stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer 1983; 52: 856–60
  • Southam C M, Moore A E. Clinical studies of viruses as antineoplastic agents, with particular reference to Egypt 101 virus. Cancer 1952; 5: 1025–34
  • Coen D M, Kosz-Vnenchak M, Jacobson J G, Leib D A, Bogard C L, Schaffer P A, et al. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci USA 1989; 86: 4736–40
  • Markert J M, Malick A, Coen D M, Martuza R L. Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 1993; 32: 597–603
  • Martuza R L, Malick A, Markert J M, Ruffner K L, Coen D M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–6
  • Southam C M, Moore A E. West Nile, Ilhéus and Bunyamwera virus infection in man. J. Trop Med 1951; 31: 724–41
  • Bischoff J R, Kim D H, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–6
  • Freytag S O, Rogulski K R, Paielli D L, Gilbert J D, Kim J H. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–33
  • Wildner O, Blaese R M, Morris J C. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of HSV-tk. Cancer Res 1999; 59: 410–3
  • Shinoura N, Yoshida Y, Tsunoda R, Ohashi M, Zhang W, Asai A, et al. Highly augmented cytopathic effect of a fiber-mutant E1B-defective adenovirus for gene therapy of gliomas. Cancer Res 1999; 59: 3411–6
  • Wildner O, Morris J C. The role of the E1B 55 kDa gene in oncolytic adenoviral vectors expressing HSV-tk: assessment of anti-tumor efficacy and toxicity. Cancer Res 2000; 60: 4167–74
  • Fueyo J, Gomez-Manzano C, Alemany R, Lee P S, McDonnell T J, Mitlianga P, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12
  • Rodriguez R, Schuur E R, Lim H Y, Henderson G A, Simons J W, Henderson D R. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–63
  • Yu D C, Chen Y, Seng M, Dilley J, Henderson D R. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59: 4200–3
  • Hallenbeck P L, Chang Y N, Hay C, Golightly D, Stewart D, Lin J, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10: 1721–33
  • Sauthoff H, Heitner S, Rom W N, Hay J G. Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 2000; 11: 379–88
  • Rancourt C, Piche A, Gomez-Navarro J, Wang M, Alvarez R D, Siegal G P, et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy. Clin Cancer Res 1999; 5: 43–50
  • Goldstein D J, Weller S K. Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 1988; 62: 196–205
  • Randazzo B P, Kucharczuk J C, Litzky L A, Kaiser L R, Brown S M, Maclean A, et al. Herpes simplex 1716—an ICP 34.5 mutant—is severely replication restricted in human skin xenografts in vivo. Virology 1996; 223: 392–5
  • Mineta T, Rabkin S D, Yazaki T, Hunter W D, Martuza R L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–43
  • Coffey M C, Strong J E, Forsyth P A, Lee P W. Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–4
  • Rommelaere J, Cornelis J J. Antineoplastic activity of parvo-viruses. J Virol Methods 1991; 33: 233–51
  • Cassel W A, Garrett R E. Newcastle disease virus as an antineoplastic agent. Cancer 1965; 18: 863–8
  • Csatary L K, Eckhardt S, Bukosza I, Czegledi F, Fenyvesi C, Gergely P, et al. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect Prev 1993; 17: 619–27
  • Mastrangelo M J, Eisenlohr L C, Gomella L, Lattime E C. Poxvirus vectors: orphaned and underappreciated. J Clin Invest 2000; 105: 1031–4
  • Gromeier M, Lachmann S, Rosenfeld M R, Gutin P H, Wimmer E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA 2000; 97: 6803–8
  • Stojdl D F, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–5
  • Shenk T. Adenoviridea. Fields' Virology, B N Fields, D M Knipe, P M Howley. Lippincott-Raven, Philadelphia, PA 1996; 2111–48
  • Bergelson J M, Cunningham J A, Droguett G, Kurt-Jones E A, Krithivas A, Hong J S, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–3
  • Tiainen M, Pajalunga D, Ferrantelli F, Soddu S, Salvatori G, Sacchi A, et al. Terminally differentiated skeletal myotubes are not confined to G0 but can enter G1 upon growth factor stimulation. Cell Growth Differ 1996; 7: 1039–50
  • Yew P R, Berk A J. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 1992; 357: 82–5
  • Yew P R, Kao C C, Berk A J. Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 1990; 179: 795–805
  • Barker D D, Berk A J. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 1987; 156: 107–21
  • Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff D D, Kim D H. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–45
  • Hall A R, Dix B R, O'Carroll S J, Braithwaite A W. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 1998; 4: 1068–72
  • Rothmann T, Hengstermann A, Whitaker N J, Scheffner M, zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72: 9470–8
  • Goodrum F D, Ornelles D A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998; 72: 9479–90
  • Goldsmith K T, Dion L D, Curiel D T, Garver R I. J. trans E1 component requirements for maximal replication of E1-defective recombinant adenovirus. Virology 1998; 248: 406–19
  • Turnell A S, Grand R J, Gallimore P H. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 1999; 73: 2074–83
  • Harada J N, Berk A J. p53-Independent and dependent requirements for ElB-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–44
  • Hay J G, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom W N. Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral Elb-55kD gene. Hum Gene Ther 1999; 10: 579–90
  • Vollmer C M, Ribas A, Butterfield L H, Dissette V B, Andrews K J, Eilber F C, et al. p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res 1999; 59: 4369–74
  • Morris J C, Wildner O. Therapy of head and neck squamous cell carcinoma with an oncolytic adenovirus expressing HSV-tk. Mol Ther 2000; 1: 56–62
  • Wildner O, Morris J C. Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses. J Gene Med 2000; 2: 353–60
  • Goodrum F D, Ornelles D A. The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol 1997; 71: 548–61
  • Babiss L E, Ginsberg H S. Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J virol 1984; 50: 202–12
  • Bridge E, Ketner G. Interaction of adenoviral E4 and E1b products in late gene expression. Virology 1990; 174: 345–53
  • Halbert D N, Cutt J R, Shenk T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 1985; 56: 250–7
  • Leppard K N, Shenk T. The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 1989; 8: 2329–36
  • Pilder S, Moore M, Logan J, Shenk T. The adenovirus ElB-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 1986; 6: 470–6
  • Harrison T, Graham F, Williams J. Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 1977; 77: 319–29
  • Ho Y S, Galos R, Williams J. Isolation of type 5 adenovirus mutants with a cold-sensitive host range phenotype: genetic evidence of an adenovirus transformation maintenance function. Virology 1982; 122: 109–24
  • Khuri F R, Nemunaitis J, Ganly I, Arseneau J, Tannock I F, Romel L, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nut Med 2000; 6: 879–85
  • Gu D L, Gonzalez A M, Printz M A, Doukas J, Ying W, D'Andrea M, et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999; 59: 2608–14
  • Doukas J, Hoganson D K, Ong M, Ying W, Lacey D L, Baird A, et al. Retargeted delivery of adenoviral vectors through fibroblast growth factor receptors involves unique cellular pathways. FASEB J 1999; 13: 1459–66
  • Moolten F L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–81
  • Ilsley D D, Lee S H, Miller W H, Kuchta R D. Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry 1995; 34: 2504–10
  • Thust R, Schacke M, Wutzler P. Cytogenetic genotoxicity of antiherpes virostatics in Chinese hamster V79-E cells. I. Purine nucleoside analogues. Antiviral Res 1996; 31: 105–13
  • Haynes P, Lambert T R, Mitchell I D. Comparative in-vivo genotoxicity of antiviral nucleoside analogues; penciclovir, acyclovir, ganciclovir and the xanthine analogue, caffeine, in the mouse bone marrow micronucleus assay. Mutat Res 1996; 369: 65–74
  • Freeman S M, Abboud C N, Whartenby K A, Packman C H, Koeplin D S, Moolten F L, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–83
  • Culver K W, Ram Z, Wallbridge S, Ishii H, Oldfield E H, Blaese R M. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–2
  • Wildner O, Moms J C, Vahanian N N, Ford H J, Ramsey W J, Blaese R M. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999; 6: 57–62
  • Wildner O, Morris J C. Subcutaneous administration of a replication-competent adenovirus expressing HSV-tk to cotton rats: dissemination, persistence, shedding, and pathogenicity. Hum Gene Ther, in press
  • Alemany R, Lai S, Lou Y C, Jan H Y, Fang X, Zhang W W. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999; 6: 21–5
  • Roizman B. The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci USA 1996; 93: 11307–12
  • Chou J, Kern E R, Whitley R J, Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–6
  • Whitley R J, Kimberlin D W, Roizman B. Herpes simplex viruses. Clin Infect Dis 1998; 26: 541–53
  • Jia W W, McDermott M, Goldie J, Cynader M, Tan J, Tufaro F. Selective destruction of gliomas in immuno-competent rats by thymidine kinase-defective herpes simplex virus type 1. J Natl Cancer Inst 1994; 86: 1209–15
  • Nilaver G, Muldoon L L, Kroll R A, Pagel M A, Breakefield X O, Davidson B L, et al. Delivery of herpesvirus and adenovirus to nude rat intracerebral tumors after osmotic blood-brain barrier disruption. Proc Natl Acad Sci U S A 1995; 92: 9829–33
  • Mineta T, Rabkin S D, Martuza R L. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 1994; 54: 3963–6
  • Mineta T, Rabkin S D, Yazaki T, Hunter W D, Martuza R L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–43
  • Boviatsis E J, Chase M, Wei M X, Tamiya T, Hurford R KJ, Kowall N W, et al. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors. Hum Gene Ther 1994; 5: 183–91
  • Poon A P, Roizman B. Differentiation of the shutoff of protein synthesis by virion host shutoff and mutant gamma (1)34.5 genes of herpes simplex virus 1. Virology 1997; 229: 98–105
  • MacLean A R, ul-Fareed M, Robertson L, Harland J, Brown S M. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 1991; 72: 631–9
  • Taha M Y, Brown S M, Clements G B, Graham D I. The JH2604 deletion variant of herpes simplex virus type 2 (HG52) fails to produce necrotizing encephalitis following intracranial inoculation of mice. J Gen Virol 1990; 71: 1597–601
  • Valyi-Nagy T, Fareed M U, O'Keefe J S, Gesser R M, MacLean A R, Brown S M, et al. The herpes simplex virus type 1 strain 17+ gamma 34.5 deletion mutant 1716 is avirulent in SCID mice. J Gen Virol 1994; 75: 2059–63
  • Brown S M, MacLean A R, Aitken J D, Harland J. ICP34.5 influences herpes simplex virus type 1 maturation and egress from infected cells in vitro. J Gen Virol 1994; 75: 3679–86
  • Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000; 7: 859–66
  • Markert J M, Medlock M D, Rabkin S D, Gillespie G Y, Todo T, Hunter W D, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000; 7: 867–74
  • Pyles R B, Warnick R E, Chalk C L, Szanti B E, Parysek L M. A novel multiply-mutated HSV-1 strain for the treatment of human brain tumors. Hum Gene Ther 1997; 8: 533–44
  • Boursnell M E, Entwisle C, Ali S A, Sivasubramaniam S D, Reeder S, McLean C S, et al. Disabled infectious single cycle (DISC) herpes simplex virus as a vector for immunotherapy of cancer. Adv Exp Med Biol 1998; 451: 379–84
  • Dilloo D, Rill D, Entwistle C, Boursnell M, Zhong W, Holden W, et al. A novel herpes vector for the high-efficiency transduction of normal and malignant human hematopoietic cells. Blood 1997; 89: 119–27
  • Toda M, Rabkin S D, Martuza R L. Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther 1998; 9: 2177–85
  • Walker J R, McGeagh K G, Sundaresan P, Jorgensen T J, Rabkin S D, Martuza R L. Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther 1999; 10: 2237–43
  • Kooby D A, Carew J F, Halterman M W, Mack J E, Bertino J R, Blumgart L H, et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13: 1325–34
  • Coukos G, Makrigiannakis A, Montas S, Kaiser L R, Toyozumi T, Benjamin I, et al. Multi-attenuated herpes simplex virus-1 mutant G207 exerts cytotoxicity against epithelial ovarian cancer but not normal mesothelium and is suitable for intraperitoneal oncolytic therapy. Cancer Gene Ther 2000; 7: 275–83
  • Chahlavi A, Todo T, Martuza R L, Rabkin S D. Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia 1999; 1: 162–9
  • Randazzo B P, Bhat M G, Kesari S, Fraser N W, Brown S M. Treatment of experimental subcutaneous human melanoma with a replication-restricted herpes simplex virus mutant. J Invest Dermatol 1997; 108: 933–7
  • Todo T, Rabkin S D, Chahlavi A, Martuza R L. Corticosteroid administration does not affect viral oncolytic activity, but inhibits antitumor immunity in replication-competent herpes simplex virus tumor therapy. Hum Gene Ther 1999; 10: 2869–78
  • Miyatake S, Martuza R L, Rabkin S D. Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther 1997; 4: 222–8
  • Aghi M, Chou T C, Suling K, Breakefield X O, Chiocca E A. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovirherpes simplex virus thymidine kinase gene therapies. Cancer Res 1999; 59: 3861–5
  • Sabin A B. Reoviruses: a new group of respiratory and enteric viruses formerly calssified as ECHO type 10 is described. Science 1959; 130: 1387–9
  • Tyler K L, Fields B N. Reoviruses and their replication. Fields' Virology, B N Fields, D M Knipe, P M Howley. Lippincott-Raven, Philadelphia, PA 1996; 1597–623
  • Jackson G G, Muldoon R L. Viruses causing common respiratory infection in man. IV. Reoviruses and adenoviruses. J Infect Dis 1973; 128: 811–66
  • Duncan M R, Stanish S M, Cox D C. Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol 1978; 28: 444–9
  • Hashiro G, Loh P C, Yau J T. The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol 1977; 54: 307–15
  • Strong J E, Coffey M C, Tang D, Sabinin P, Lee P W. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 1998; 17: 3351–62
  • Clarke P, Meintzer S M, Gibson S, Widmann C, Garrington T P, Johnson G L, et al. Reovirus-induced apoptosis is mediated by TRAIL. J Virol 2000; 74: 8135–9
  • Bos J L. ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–9, [published erratum appears in Cancer Res 1990 50 1352]
  • Berns K I. Parvoviridae: The viruses and their replication. Fields' Virology, B N Fields, D M Knipe, P M Howley. Lippincott-Raven, Philadelphia 1996; 2173–97
  • Dupressoir T, Vanacker J M, Cornelis J J, Duponchel N, Rommelaere J. Inhibition by parvovirus H-1 of the formation of tumors in nude mice and colonies in vitro by transformed human mammary epithelial cells. Cancer Res 1989; 49: 3203–8
  • Dupont F, Avalosse B, Karim A, Mine N, Bosseler M, Maron A, et al. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector. Gene Ther 2000; 7: 790–6
  • Caillet-Fauquet P, Perros M, Brandenburger A, Spegelaere P, Rommelaere J. Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. EMBO J 1990; 9: 2989–95
  • Moffatt S, Yaegashi N, Tada K, Tanaka N, Sugamura K. Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol 1998; 72: 3018–28
  • Rayet B, Lopez-Guerrero J A, Rommelaere J, Dinsart C. Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signaling pathway. J Virol 1998; 72: 8893–903
  • Rommelaere J, Cornelis J J. Antineoplastic activity of parvo-viruses. J Virol Methods 1991; 33: 233–51
  • Perros M, Deleu L, Vanacker J M, Kherrouche Z, Spruyt N, Faisst S, et al. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells. J Virol 1995; 69: 5506–15
  • Fuks F, Deleu L, Dinsart C, Rommelaere J, Faisst S. ras oncogene-dependent activation of the P4 promoter of minute virus of mice through a proximal P4 element interacting with the Ets family of transcription factors. J Virol 1996; 70: 1331–9
  • Schlag P, Manasterski M, Gerneth T, Hohenberger P, Dueck M, Herfarth C, et al. Active specific immunotherapy with Newcastle-disease-virus-modified autologous tumor cells following resection of liver metastases in colorectal cancer. First evaluation of clinical response of a phase II-trial. Cancer Immunol Immunother 1992; 35: 325–30
  • Schirrmacher V, Ahlert T, Probstle T, Steiner H H, Herold-Mende C, Gerhards R, et al. Immunization with virus-modified tumor cells. Semin Oncol 1998; 25: 677–96
  • Gromeier M, Alexander L, Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in inter-generic poliovirus recombinants. Proc Natl Acad Sci USA 1996; 93: 2370–5
  • Jang S K, Krausslich H G, Nicklin M J, Duke G M, Palmenberg A C, Wimmer E. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 1988; 62: 2636–43
  • Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988; 334: 320–5
  • Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 1999; 73: 958–64
  • Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 1996; 93: 11341–8
  • Mastrangelo M J, Maguire H C, Lattime E C. Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma. Adv Exp Med Biol 2000; 465: 391–400
  • Overwijk W W, Lee D S, Surman D R, Irvine K R, Touloukian C E, Chan C C, et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci USA 1999; 96: 2982–7
  • Zajac P, Schutz A, Oertli D, Noppen C, Schaefer C, Heberer M, et al. Enhanced generation of cytotoxic T lymphocytes using recombinant vaccinia virus expressing human tumor-associated antigens and B7 costimulatory molecules. Cancer Res 1998; 58: 4567–71
  • Mastrangelo M J, Maguire H C, Eisenlohr L C, Laughlin C E, Monken C E, McCue P A, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 1999; 6: 409–22
  • Kloke O, Niederle N. Development and mechanisms of interferon resistance. Cancer Treat Rev 1990; 17(Suppl A)81–8
  • Rose J K, Schubert M. Rhabdovirus genomes and their products. The rhabdoviruses, R R Wagner. Plenum, New York 1987; 129–66
  • Banks T A, Rouse B T. Herpesviruses-immune escape artists?. Clin Infect Dis 1992; 14: 933–41
  • Mullbacher A. Viral escape from immune recognition: multiple strategies of adenoviruses. Immunol Cell Biol 1992; 70: 59–63
  • Bramson J L, Hitt M, Gauldie J, Graham F L. Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination. Gene Ther 1997; 4: 1069–76
  • Herrlinger U, Kramm C M, Aboody-Guterman K S, Silver J S, Ikeda K, Johnston K M, et al. Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-I vector. Gene Ther 1998; 5: 809–19
  • Chahlavi A, Rabkin S, Todo T, Sundaresan P, Martuza R. Effect of prior exposure to herpes simplex virus 1 on viral vector- mediated tumor therapy in immunocompetent mice. Gene Ther 1999; 6: 1751–8
  • Toda M, Rabkin S D, Kojima H, Martuza R L. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 1999; 10: 385–93
  • Todo T, Rabkin S D, Sundaresan P, Wu A, Meehan K R, Herscowitz H B, et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10: 2741–55
  • Shisler J, Duerksen-Hughes P, Hermiston T M, Wold W S, Gooding L R. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J Virol 1996; 70: 68–77
  • Roth J A, Cristiano R J. Gene therapy for cancer: what have we done and where are we going?. J Natl Cancer Inst 1997; 89: 21–39
  • Jain R K. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990; 50(3 Suppl)814s–9s
  • Carroll N M, Chase M, Chiocca E A, Tanabe K K. The effect of ganciclovir on herpes simplex virus-mediated oncolysis. J Surg Res 1997; 69: 413–7
  • Todo T, Rabkin S D, Martuza R L. Evaluation of ganciclovir-mediated enhancement of the antitumoral effect in oncolytic, multimutated herpes simplex virus type 1 (G207) therapy of brain tumors. Cancer Gene Ther 2000; 7: 939–46
  • Chase M, Chung R Y, Chiocca E A. An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclo-phosphamide chemotherapy. Nat Biotechnol 1998; 16: 444–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.