35
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Nutritional Rickets: Thoughts About Pathogenesis

&
Pages 379-384 | Published online: 08 Jul 2009

References

  • Sandstead H H. Clinical manifestations of certain clinical deficiency diseases. Modern Nutrition in Health and Disease, R S Goodhart, M E Shils. Lea and Febriger, Philadelphia 1980; 693–6
  • Vukicevic S, Kremplen B, Stavljenlc A. Effects of 1 alpha, 25‐, 25‐ and 24R,25‐dihydroxyvitamin D3 on aluminum‐induced rickets in growing uremic rats. J Bone Miner Res 1987; 2: 533–45
  • Taha S P, Dost S M, Sedrani S H. 25‐hydroxyvitamin D and total calcium: extraordinary low plasma concentrations in Saudi mothers and their neonates. Pediatr Res 1984; 18: 739–41
  • Stamp T CB. Factors in human vitamin D nutrition are in the production and cure of classical rickets. Proc Nutr Soc 1975; 34: 119–30
  • Specker B L, Ho M L, Oestreich A, et al. Prospective study of vitamin D supplementation in rickets in China. J Pediatr 1992; 120: 733–9
  • Kooh S W, Fraser D, Reilly B J, et al. Rickets due to calcium deficiency. N Engl J Med 1977; 297: 1264–6
  • Pettifor J M, Ross F P, Travers R, Glorieux F H, DeLuca H F. Dietary calcium deficiency: a syndrome associated with bone deformities and elevated serum 1,25‐dihydroxyvitamin D concentration. Metab Sone Dis Rel Res 1981; 2: 301–6
  • Rowe J C, Wood D H, Rowe D W, Raisz L G. Nutritional hypophosphatemic rickets in a premature infant fed breast milk. N Engl J Med 1979; 200: 293–6
  • Klein G L, Cannon R A, Diament M, et al. Infantile vitamin D‐resistant rickets associated with total parenteral nutrition. Am J Dis Child 1982; 136: 74–6
  • Koo W WK, Oestreich A, Tsang R C, Sherman R, Stelchen J. Natural history of rickets and fractures in very low birth weight (VLBW) infants during infancy. J Bone Miner Res 1986; 1: 123, (Abstract 255)
  • Koo W WK, Tsang R C, Steichen J, et al. Parenteral nutrition for infants: effect of high versus low calcium and phosphorus content. J Pediatr Gastroenterol Nutr 1987; 6: 96–104
  • Sedman A B, Klein G L, Merrltt R J, et al. Evidence of aluminum loading in infants receiving intravenous therapy. N Engl J Med 1985; 312: 1337–43
  • Carpenter T O, Mitnlck M A, Smith C, Ellison A, Carey B, Insogna K L. Nocturnal hyperparathyroidism is a frequent feature of hypophosphatemic rickets. J Bone Miner Res 1992; 7(Suppl. 1)S336
  • Henry H L, Norman A W. Vitamin D: metabolism and biological actions. Annu Rev Nutr 1984; 4: 493–520
  • Klein G L, Coburn J W. Parenteral nutrition: effect on bone and mineral homeostasis. Annu Rev Nutr 1991; 11: 93–119
  • Ogden J A. Histogenesis of the musculoskeletal system. Nutrition and Bone Development, D J Simmons. Oxford University Press, Oxford 1990; 3–36
  • Krempien B, Mehls O, Ritz E. Morphological studies in pathogenesis of epiphyseal slipping in uremic children. Virchow's Arch Pathol Anat Histol 1974; 372: 129–43
  • Mehls O, Ritz E, Krempien B, et al. Slipped epiphyses in renal osteodystrophy. Arch Dis Child 1975; 50: 545–54
  • Marie P, Glorieux F H. Histomorphometric study of bone remodeling in hypophosphatemic vitamin D‐resistant rickets. Metab Bone Dis Rel Res 1981; 3: 31–8
  • Hunter W L, Arsenault A L, Hodsman A B. Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed. Anat Rec 1991; 229: 453–61
  • Rohr H P. Autoradiographische Untersuchungen uber das Knorpel‐Knocken‐Langenwachstum bei der experi‐mentellen Rattenrachitis. Z Ges Exp Med 1963; 137: 248–55
  • Simmons D J, Kunin A S. Development and healing of rickets in rats. II. Studies with tritiated proline. Clin Orthop 1970; 68: 261–72
  • Simmons D J, Kunin A S. Development and healing of rickets in rats. I. Studies with tritiated thymidine and nutritional considerations. Clin Orthop 1970; 68: 251–60
  • Ehrllch M G, Weiss C, Mankin H J, Treadwell B V, Sanzone C. Histochemical, metabolic and ultrastructural studies of the maturation zone of the rachitic rat epiphyseal plate. J Bone Joint Surg 1973; 55A: 785–94
  • Sheldon H, Robinson R A. Studies on rickets. I. The fine structure of uncalcified bone matrix in experimental rickets. Z Zellforsch 1961; 53: 671–84
  • Kunin A S, Krane S M. Utilization of citrate by epiphyseal cartilage of rachitic and normal rats. Biochem Biophys Acta 1965; 111: 32–9
  • Kunin A S, Krane S M. The effect of dietary phosphorus on the intermediary metabolism of epiphyseal cartilage from rachitic rats. Biochem Biophys Acta 1965; 107: 203–14
  • Kato Y, Shlmazu A, Iwamoto M, et al. Role of 1,25‐dihydroxycholecalciferol in growth‐plate cartilage: inhibition of terminal differentiation of chondrocytes in vitro and in vivo. Proc Natl Acad Sci USA 1990; 87: 6522–6
  • Hjertquist S ‐O. Autoradiographic study of the proximal tibial growth zone in normal and rachitic rats after administration of radiosulphate. Acta Pathol Microbiol Scand 1962; 154: 99–100, (Suppl.)
  • Hjertquist S ‐O. Autoradiographic study of the epiphyseal cartilage and bone tissue in normal and rachitic rats after administration of radiosulphate. Biochim Biol Sper 1961; 2: 126–40
  • Carrino D A, Lidor C, Edelstein S, Caplan Al. Proteoglycan synthesis in vitamin D‐deficient cartilage: recovery from vitamin D deficiency. Conn Tissue Res 1989; 19: 135–47
  • Kwan A PL, Dickson I R, Freemont A J, Grant M E. Comparative studies of Type X collagen expression in normal and rachitic chicken epiphyseal cartilage. J Cell Biol 1989; 109: 1849–56
  • Appleton J. The ultrastructural distribution of proteoglycans in normal and rachitic growth cartilage from the mandibular condyle of the rat. Arch Oral Biol 1988; 33: 379–81
  • Dean D D, Muniz O E, Howell D S. Association of collagen‐ase and tissue inhibitor of metalloproteinases (TIMP) with hypertrophic cell enlargement in the growth plate. Matrix 1989; 9: 366–75
  • Greenwald R A, Simonson B G, Moak S A, et al. Inhibition of epiphyseal cartilage collagenase by tetracyclines in low phosphate rickets in rats. J Orthop Res 1988; 6: 695–703
  • Brown R A, Taylor C, McLaughlin B, McFarland C D, Weiss J B, Ali S Y. Epiphyseal growth plate cartilage and chondrocytes in mineralizing cultures produce a low molecular mass angiogenic procollagenase activator. Bone Mineral 1987; 3: 143–58
  • Horton J E, Wezeman F H, Kuettner K E. Inhibition of bone resorption in vitro by a cartilage‐derived anticollagenase factor. Science 1978; 199: 1342–5
  • Eisenstein R, Kuettner K E, Neapolitan C, Soble L W, Sorgente N. The resistance of certain tissues to invasion. III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am J Pathol 1975; 81: 337–46
  • Kuettner K E, Pauli B U. Inhibition of neovascularization by a cartilage factor. Development of the vascular system. Pitman Books, London 1983; 163–73, (Ciba Foundation Symp. 100)
  • Moses M A, Sudhalter J, Langer R. Indentification of an inhibitor of neovascularization from cartilage. Science 1990; 248: 1408–10
  • Klagsbrun M, Langer R, Levenson R, Smith S, Lillehei C. The stimulation of DNA synthesis and cell division in chondrocytes and 3T3 cells by a growth factor isolated from cartilage. Exp Cell Res 1977; 105: 99–108
  • Klagsbrun M, Smith S. Purification of a cartilage derived growth factor. J Biol Chem 1980; 255: 10859–66
  • Maltsev S V, Zabolotnaia L N, Linvinov Rl. Concentration of plasma fibronectin and metabolism indices in the bone tissue of healthy children and in children with rickets. Pediatriia 1991; 4: 15–19
  • Seyedin S M, Thomas T C, Thompson A Y, Rosen D M, Piez K A. Purification and characterization of two cartilage‐inducing factors from bovine demineralized bone. Proc Natl Acad Sci USA 1985; 82: 2267–71
  • Rosen D M, Stempien S A, Thompson A Y, Seyedin S M. Transforming growth factor‐beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 1988; 134: 337–46
  • Ishikawa Y, Wu L NY, Valhmu W B, Wuthier R E. Fetuin and alpha‐2HS glycoprotein induce alkaline phosphatase in epiphyseal growth plate chondrocytes. J Cell Physiol 1991; 149: 222–34
  • Sobel A E, Burger M, Nobel S. Calcification XXI. Detection of nuclei of crystallization in rachitic cartilage. Proc Soc Exp Biol Med 1958; 99: 341–4
  • Hirschman A, Sobel A E. Composition of the mineral deposited during invitrocalcification in relation to the fluid phase. Arch Biochem Biophys 1965; 110: 237–43
  • Samachson J, Nobel S, Sobel A E. Calcification. XXII. A method of studying crystal growth. J Dent Res 1959; 38: 253–61
  • Anderson H C, Cecil R, Sajdera S W. Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles. Am J Pathol 1975; 237–46
  • Johnson T F, Morris D C, Anderson H C. Matrix vesicles and calcification of rachitic rat osteoid. J Exp Pathol 1989; 4: 123–32
  • Anderson H C, Stechschulte D J, Jr, Collins D E, et al. Matrix vesicle biogenesis in vitro by rachitic and normal rat chondrocytes. Am J Pathol 1991; 136: 391–8
  • Brighton C T, Hunt R M. Mitochondrial calcium and its role in calcification. Clin Orthop 1974; 100: 406–16
  • Morris D C, Randall J C, Stechschulte D J, Jr, Zeiger S, Mansur D B, Anderson H C. Enzyme cytochemical localization of alkaline phosphatase in cultures of chondrocytes derived from normal and rachitic rats. Bone 1990; 11: 345–52
  • Reinholt F P, Wernerson A. Septal distribution and the relationship of matrix vesicle size to cartilage mineralization. Bone Mineral 1988; 4: 63–71
  • Boskey A L, Dickson I R. Influence of vitamin D status on the content of complexed phospholipids in chick diaphyseal bone. Bone Mineral 1988; 4: 365–71
  • Howell D S, Pita J C, Marquez J F, Madruca J E. Partition of calcium, phosphate, and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage. J Clin Invest 1968; 47: 1121–32
  • Parsons V, Self M. Urinary hydroxyproline excretion in phosphate depleted rachitic rats. Nature 1968; 217: 551–2
  • Rohr H ‐P. Autoradiographische Untersuchungen uber den Kollagenstoffwechsel bei der experimentellen Rattenrachitis. Z Ges Exp Med 1965; 139: 621–32
  • Robinson R A, Sheldon H. Crystal‐collagen relationships in healing rickets. Calcification in biological systems, R F Sognnaes. AAAS, Washington 1960; 261–79
  • Lian J B, Carnes D B, Glimcher M J. Bone and serum concentrations of osteocalcin as a function of 1,25‐dihydroxy‐vitamin D3 circulating levels jn bone disorders in rats. Endocrinology 1987; 120: 21, 23–30
  • Canalis E, Centrella M, Burch E, McCarthy T L. Insulin‐like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 1989; 83: 60–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.