113
Views
158
CrossRef citations to date
0
Altmetric
Review Article

Collagens and their Abnormalities in a Wide Spectrum of Diseases

Pages 113-126 | Published online: 08 Jul 2009

References

  • Structure and function of collagen types, R Mayne, R E Burgeson. Academic Press, Orlando 1987
  • Burgeson R E. New collagens, new concepts. Annu Rev Ce// Biol 1988; 4: 551–77
  • Structure, molecular biology, and pathology of collagen. Ann NY Acad Sci 1990; 580: 1–592, Fleischmajer R, Olsen B, Kühn K, eds.
  • Vuorio E, de Crombrugghe B. The family of collagen genes. Annu Rev Biochem 1990; 59: 837–72
  • Ramirez F, di Liberto M. Complex and diversified regulatory programs control the expression of vertebrate collagen genes. FASEB J 1990; 4: 1616–23
  • Shaw L M, Olsen B R. FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem Sci 1991; 16: 191–4
  • van der Rest M, Garrone R. Collagen family of proteins. FASEB J 1991; 5: 2814–23
  • Connective tissue and its heritable disorders: molecular, genetic and medical aspects, P M Royce, B Steinmann. Wiley-Liss, New York 1992
  • Prockop O J, Kivirikko Kl. Heritable diseases of collagen. N Engl J Med 1984; 311: 376–86
  • Prockop D J, Kulvanieml H. Inborn errors of collagen. Rheumatol 1986; 10: 246–71
  • Byers P H. Disorders of collagen biosynthesis and structure. The metabolic basis of inherited disease, C R Scriver, A L Beaudet, W S Sly, D Valle. McGraw-Hill, New York 1989; 2805–42
  • Byers P H. Brittle bones — fragile molecules: disorders of collagen gene structure and expression. Trends Genet 1990; 6: 293–300
  • Prockop O J. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem 1990; 265: 15349–52
  • Kuivaniemi H, Tromp G, Prockop D J. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J 1991; 5: 2052–60
  • Pihlajanieml T, Pohjolainen E-R, Myers J C. Complete primary structure of the triple-helical region and the carboxyterminal domain of a new type IV collagen chain, α5(IV). J Biol Chem 1990; 265: 13758–66
  • Myers J C, Kivirikko S, Gordon M K, Dion A S, Pihlajanieml T. Identification of a previously unknown human collagen chain, α1(XV), characterized by extensive interruptions in the triple-helical region. Proc Natl Acad Sci USA 1992; 89: 10144–8
  • Pan T-C, Zhang R-Z, Mattel M-G, Timpl R, Chu M-L. Cloning and chromosomal location of human α1(XVI) collagen. Proc Natl Acad Sci USA 1992; 89: 6565–9
  • Li K, Sawamura D, Giudice G J, Diaz L A, Mattel M-G, Chu M-L, Ultto J. Genomic organization of collagenous domains and chromosomal assignment of human 180-kDa bullous pemphigoid antigen-2, a novel collagen of stratified squamous epithelium. J Biol Chem 1991; 266: 24064–9
  • Rehn M, Pihlajanleml T. Mouse clones for type XIII collagen and one previously unidentified collagen chain (abstract). Matrix 1993; 13: 12
  • Yoshioka H, Zhang H, Ramirez F, Mattel M-G, Moradi-Amell M, van der Rest M, Gordon M K. Synteny between the loci for a novel FACIT-like collagen locus (D6S228E) and α1(IX) collagen (COL9A1) on 6q12-q14 in humans. Genomics 1992; 13: 884–6
  • Kleppel M M, Fan W W, Cheong H I, Michael A F. Evidence for separate networks of classical and novel basement membrane collagen. Characterization of α3(IV)-Alport antigen heterodimer. J Biol Chem 1992; 267: 4137–42
  • Chu M-L, Prockop D J. Collagen: gene structure. Connective tissue and its heritable disorders: molecular, genetic and medical aspects, P M Royce, B Steinmann. Wiley-Liss, New York 1992; 149–66
  • Myers J C, Jones T A, Pohjalainen E-R, Kadri A S, Goddard A D, Sheer D, Solomon E, Plhlajanleml T. Molecular cloning of α5(IV) collagen and assignment of the gene to the region of the X chromosome containing the Alport syndrome locus. Am J Hum Genet 1990; 46: 1024–33
  • Hostikka S L, Eddy R L, Byers M G, Höyhtyä M, Shows T B, Tryggvason K. Identification of a distinct type IV collagen α chain with restricted kidney distribution and assignment of the gene to the locus of X chromosome-linked Alport syndrome. Proc Natl Acad Sci USA 1990; 87: 1606–10
  • Parente M G, Chung L C, Ryynänen J, Woodley D T, Wynn K C, Bauer E A, Mattel M-G, Chu M-L, Ultto J. Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc Natl Acad Sci USA 1991; 88: 6931–5
  • Muragakl Y, Mattel M-G, Yamaguchl N, Olsen B R, Ninomlya Y. The complete primary structure of the human α1 (VIII) chain and assignment of its gene (COL8A1) to chromosome 3. Eur J Biochem 1991; 197: 615–22
  • Muragakl Y, Jacenko O, Apte S, Mattel M-G, Ninomlya Y, Olsen B R. The α2(VIII) collagen gene. A novel member of the short chain collagen family located on the human chromosome 1. J Biol Chem 1991; 266: 7721–7
  • Apte S, Mattel M-G, Olsen B R. Cloning of human α1(X) collagen DNA and localization of the COL10A1 gene to the q21-q22 region of human chromosome 6. FEBS Lett 1991; 282: 393–6
  • Greenspan D S, Byers M G, Eddy R L, Cheng W, Jani-Salt S, Shows T B. Human collagen gene COL5A1 maps to the q34.2-q34.3 region of chromosome 9, near the locus for nail-patella syndrome. Genomics 1992; 12: 836–7
  • Mariyama M, Zheng K, Yang-Feng T L, Readers S T. Colocalization of the genes for the α3(IV) and α4(IV) chains of type IV collagen to chromosome 2 bands q35–37. Genomics 1992; 13: 809–13
  • Huebner K, Cannizzaro L A, Jabs E W, Kivirikko S, Manzone H, Pihlajaniemi T, Myers J C. Chromosomal assignment of a gene encoding a new collagen type (COL15A1) to 9q21-q22. Genomics 1992; 14: 220–4
  • Oh S P, Taylor R W, Gercke D R, Rochelle J M, Seldin M F, Olsen B R. The mouse α1(XII) and human α1(XII)-like collagen genes are localized on mouse chromosome 9 and human chromosome 6. Genomics 1992; 14: 225–31
  • Kivirikko K I, Myllylä R. Post-translational processing of procollagens. Ann NY Acad Sci 1985; 460: 187–201
  • Pihiajaniemi T, Helaakoski T, Tasanen K, Myllylä R, Huhtala M-L, Kolvu J, Kivirikko K I. Molecular cloning of the β-subunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene. EMBO J 1987; 6: 643–9
  • Helaakoski T, Vuorl K, Myllylä R, Kivirikko K I, Pihlajaniemi T. Molecular cloning of the α-subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts. Proc Natl Acad Sci USA 1989; 86: 4392–6
  • Hautala T, Byers M G, Eddy R L, Shows T B, Kivirikko K I, Myllylä R. Cloning of human lysyl hydroxylase. Complete cDNA-derived amino acid sequence and assignment of the gene (PLOD) to chromosome 1 p36.2-p36.3. Genomics 1992; 13: 62–9
  • Hämälälnen E-R, Jones T A, Sheer D, Taskinen K, Pihlajaniemi T, Kivirikko K I. Molecular cloning of human lysyl oxidase and assignment of the gene to chromosome 5q23.3–31.2. Genomics 1991; 11: 508–16
  • Kivirikko Kl, Myllylä R, Pihlajaniemi T. Hydroxylation of proline and lysine residues in collagens and other animal and plant proteins. Post-transiational modifications of proteins, J J Harding, M J C Crabbe. CRC Press, Boca Raton 1992; 1–51
  • Byers P H. Osteogenesis imperfecta. Connective tissue and its heritable disorders: molecular, genetic and medical aspects, P M Royce, B Steinmann. Wiley-Liss, New York 1992; 317–50
  • Willing M C, Pruchno C J, Atkinson M, Byers P H. Osteogenesis imperfecta type I is commonly due to a COL1A1 null allele of type I collagen. Am J Hum Genet 1992; 51: 508–15
  • Kivirikko Kl, Kuivanieml H. Posttranslational modifications of collagen and their alterations in heritable diseases. Connective tissue disease. Molecular pathology of the extracellular matrix, J Uitto, A J Perejda. Marcel Dekker, New York 1987; 263–92
  • Steinmann B, Royce P M, Superti-Furga A. The Ehlers-Danlos syndrome. Connective tissue and its heritable disorders: molecular, genetic and medical aspects, P M Royce, B Steinmann. Wiley-Liss, New York 1992; 350–408
  • D'Alessio M, Ramirez F, Blumberg B D, Wirtz M K, Rao V H, Godfrey M D, Hollister D W. Characterization of a COL1A1 splicing defect in a case of Ehlers-Danlos syndrome type VII: Further evidence of molecular homogeneity. Am J Hum Genet 1991; 49: 400–6
  • Nicholls A C, Oliver J, Renouf D V, McPheat J, Palan A, Pope F M. Ehlers-Danlos syndrome type VII: a single base change that causes exon skipping in the type I collagen α2(I) chain. Hum Genet 1991; 87: 193–8
  • Chiodo A A, Hockey A, Cole W G. A base substitution of the splice acceptor site of intron 5 of the COL1A1 gene activates a cryptic splice site within exon 6 and generates abnormal type I procollagen in a patient with Ehlers-Danlos syndrome type VII. J Biol Chem 1992; 267: 6361–9
  • Phillips C L, Shrago-Howe A W, Pinnell S, Wenstrup R J. A substitution at a non-glycine position in the triple-helical domain of pro α2(1) collagen chains present in an individual with a variant of the Marfan syndrome. J Clin Invest 1990; 86: 1723–8
  • Godfrey M, Menashe V, Weleber R G, Koler R D, Bigley R H, Lovríen E, Zonana J, Hollister D W. Cosegregation of elastin-associated microfibrillar abnormalities with the Marfan phenotype in families. Am J Hum Genet 1990; 46: 652–60
  • Kalnulainen K, Pulkkinen L, Savolainen A, Kaitlla I, Peltonen L. Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med 1990; 323: 935–9
  • Dletz H C, Pyeritz R E, Hall B D, Cadie R G, Hamosh A, Schwartz J, Meyers D A, Francomano C A. The Marfan syndrome locus: confirmation of assignment to chromosome 15 and identification of tightly linked markers at 15q15-q21.3. Genomics 1991; 9: 355–61
  • Kalnulainen K, Steinmann B, Collins F, Dletz H C, Francomano C A, Child A, Kilpatrlck M W, Brock D J H, Keston M, Pyeritz R E, Peltonen L. Marfan syndrome: no evidence for heterogeneity in different populations, and more precise mapping of the gene. Am J Hum Genet 1991; 49: 662–7
  • Lee B, Godfrey M, Vitale E, Hori H, Mattel M-G, Sarfarazi M, Tsipouras P, Ramirez F, Hollister D W. Linkage of Marfan syndrome and a phenotypically related disorder to two fibrillin genes. Nature 1991; 352: 330–4
  • Magenis R E, Maslen C L, Smith L, Allen L, Sakal L Y. Localization of the fibrillin (FBN) gene to chromosome 15, band q21.1. Genomics 1991; 11: 346–51
  • Dletz H C, Cutting G R, Pyeritz R E, Maslen C L, Sakal L Y, Corson G M, Puffenberger E G, Hamosh A, Nanthakumar E J, Curristin S M, Stetten G, Meyers D A, Francomano C A. Marfan syndrome caused by a recurrent de nove missense mutation in the fibrillin gene. Nature 1991; 352: 337–9
  • Kainulainen K, Sakai L Y, Child A, Pope F M, Puhakka L, Ryhänen L, Palotie A, Kaitila I, Peltonen L. Two unique mutations in Marfan syndrome result in truncated polypeptide chains of fibrillin. Proc Natl Acad Sci USA 1992; 89: 5917–21
  • Prockop D J. Mutations in collagen genes as a cause of connective tissue diseases. N Engl J Med 1992; 326: 540–6
  • Shapiro J R, Stover M L, Burn V E, McKinstry M B, Burshell A L, Chipman S D, Rowe D W. An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro α1(1) chain of type I collagen. J Clin Invest 1992; 89: 567–73
  • Pihlajaniemi T, Dickson L A, Pope F M, Korhonen V R, Nicholls A, Prockop D J, Myers J. Osteogenesis imperfecta: cloning of a pro α2(1) collagen gene with a frame-shift mutation. J Biol Chem 1984; 259: 12941–4
  • Spotila L D, Constantinou C D, Sereda L, Ganguly A, Riggs B L, Prockop D J. Mutation in the gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta. Proc Natl Acad Sci USA 1991; 88: 5423–7
  • Nicholls A C, Oliver J, Renouf D A, Heath D A, Pope F M. The molecular defect in a family with mild atypical osteogenesis imperfecta and extreme hypermobility: exon skipping caused by an 11-bp deletion from an intron in one COL1A2 allele. Hum Genet 1992; 88: 627–33
  • Shapiro J R, Burn V E, Chipman S D, Velis K P, Bansal M. Osteoporosis and familial idiopathic scoliosis: association with an abnormal α2(I) collagen. Connect Tissue Res 1989; 21: 117–24
  • Constantinou C D, Pack M, Prockop D J. A mutation in the type I procollagen gene on chromosome 17q21.31-q22.05 or 7q21.3-q22.1 that decreases the thermal stability of the protein in a woman with ankylosing spondylitis and osteopenia. Cytogenet Cell Genet 1990; 51: 979
  • Vissing H, D'Alesio M, Lee B, Ramirez F, Godfrey M, Hollister D W. Glycine to serine substitution in the triple helical domain of pro α1(II) collagen results in a lethal perinatal form of short-limbed dwarfism. J Biol Chem 1989; 264: 18265–7
  • Horton W A, Machado M A, Ellard J, Campbell D, Bartley J, Ramirez F, Vitale E, Lee B. Characterization of a type II collagen gene (COL2A1) mutation identified in cultured chondrocytes from human hypochondrogenesis. Proc Natl Acad Sci USA 1992; 89: 4583–7
  • Lee B, Vissing H, Ramirez F, Rogers D, Rimoin D. Identification of a molecular defect in a family with spondyloepiphyseal dysplasia. Science 1989; 244: 978–80
  • Tiller G E, Rimoin D L, Murray L W, Conn D H. Tandem duplication within a type II collagen gene (COL2A1) exon in an individual with spondyloepiphyseal dysplasia. Proc Natl Acad Sci USA 1990; 87: 3889–93
  • Chan D, Cole W. Low basal transcription of genes for tissue-specific collagens by fibroblasts and lymphoblastoid cells. Application to the characterization of a glycine 997 to serine substitution in α1(II) collagen chains of a patient with spondyloepiphyseal dysplasia. J Biol Chem 1991; 266: 12487–94
  • Vikkula M, Ritvanlemi P, Vuorio A F, Kaitila I, Ala-Kokko L, Peltonen L. A mutation in the amino terminal triple helix of type II collagen causing severe osteochondrodysplasia. Genomics 1993, (in press)
  • Ahmad N N, Ala-Kokko L, Knowlton R G, Jimenez S A, Weaver E J, Maguire Jt, Tasman W, Prockop D J. Stop codon in the procollagen II gene (COL2A1) in a family with the Stickler Syndrome (arthro-ophthalmopathy). Proc Natl Acad Sci USA 1991; 88: 6624–7
  • Ahmad N N, McDonald-McGinn D M, Zackai E H, Knowlton R G, LaRossa D, Dimascio J, Prockop D J. A second mutation in the type II procollagen gene (COL2A1) causing the Stickler syndrome (arthro-ophthalmology) is also a premature termination codon. Am J Hum Genet 1993; 52: 39–45
  • Ritvaniemi P, Hyland J, Ignatius J, Kivirikko K I, Prockop D J, Ala-Kokko L. A third example suggests premature termination codons in the COL2A1 gene are a common cause of the Stickler syndrome. Analysis of the COL2A1 gene by denaturing gradient gel electrophoresis. Genomics.
  • Brown D M, Nichols B E, Welngeist T A, Sheffield V C, Kimura A E, Stone E M. Procollagen II gene mutation in Stickler syndrome. Arch Ophthalmol 1992; 110: 1589–93, A301
  • Palotie A, Väisänen P, Ott J, Ryhänen L, Elima K, Vikkula M, Cheah K, Vuorio E, Peltonen L. Predisposition to familial osteoarthrosis linked to type II collagen gene. Lancet 1989; i: 924–7
  • Knowlton R G, Katzenstein P L, Moskowitz R W, Weaver E J, Malemud C J, Pathria M N, Jimenez S A, Prockop D J. Genetic linkage of a polymorphism in the type II procollagen gene (COL2A1) to primary osteoarthrosis associated with mild chondrodysplasia. N Engl J Med 1990; 322: 526–30
  • Vikkula M, Palotie A, Ritvanlemi P, Ott J, Ala-Kokko L, Sievers U, Aho K, Peltonen L. Early-onset osteoarthritis linked to the type II procollagen gene: detailed clinical phenotype and further analyses of the gene. Arthr Rheum 1993, (in press)
  • Ala-Kokko L, Baldwin C T, Moskowitz R W, Prockop D J. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthrosis associated with a mild chondrodysplasia. Proc Natl Acad Sci USA 1990; 87: 6565–8
  • Priestley L, Ferguson C, Ogilvie D, Wordsworth P, Smith R, Pattrick M, Doherty M, Sykes B. A limited association of generalized osteoarthritis with alleles at the type II collagen gene locus: COL2A1. Br J Rheumatol 1991; 30: 272–5
  • Kulvaniemi H, Tromp G, Prockop D J. Genetic causes of aortic aneurysms. Unlearning at least part of what the textbooks says. J Clin In vest 1991; 88: 1441–4
  • Richard A J, Lloyd J C, Narcisi P, Ward P N, Nicholis A C, De Paepe A, Pope F M. A 27-bp deletion from one allele of the type III collagen gene (COL3A1) in a large family with Ehlers-Danlos syndrome type IV. Hum Genet 1992; 88: 325–30
  • Richard A J, Ward P N, Narcisi P, Nicholls A C, Lloyd J C, Pope F M. A single base mutation in the gene for type III collagen (COL3A1) converts glycine 847 to glutamic acid in a family with Ehlers-Danlos syndrome type IV. An unaffected family member is mosaic for the mutation. Hum Genet 1992; 89: 414–8
  • Kontusaarl S, Tromp G, Kulvaniemi H, Stolle C, Pope F M, Prockop D J. Substitution of aspartate for glycine 1018 in the type III procollagen (COL3A1) gene causes type IV Ehlers-Danlos syndrome: the mutated allele is present in most blood leukocytes of the asymptomatic and mosaic mother. Am J Hum Genet 1992; 51: 497–507
  • Kontusaari S, Tromp G, Kuivaniemi H, Ladda R L, Prockop D J. Inheritance of an RNA splicing mutation (G+ 1IVS20) in the type III procollagen gene (COL3A1) in a family with aortic aneurysms and easy bruisability. Phenotypic overlap between familial arterial aneurysms and the Ehlers-Danlos syndrome type IV. Am J Hum Genet 1990; 47: 112–20
  • Kontusaari S, Tromp G, Kuivaniemi H, Romanic A M, Prockop D J. A mutation in the gene for type III collagen (COL3A1) in a family with aortic aneurysms. J Clin Invest 1990; 86: 1465–73
  • Deak S B, Ricotta J J, Mariani T J, Deak S T, Zatina M A, Mackenzie J W, Boyd C D. Abnormalities in the biosynthesis of type III procollagen in cultured skin fibroblasts from two patients with multiple aneurysms. Matrix 1992; 12: 92–100
  • Majamaa K, Savolalnen E-R, Myllylä W. Synthesis of structurally unstable type III procollagen in patients with cerebral artery aneurysms. Biochim Biophys Acta 1992; 1138: 191–6
  • Tryggvason K, Zhou J, Hostlkka S L, Shows T B. Molecular genetics of Alport syndrome. Kidney Int 1993; 43: 38–44
  • Barker D F, Hostlkka S L, Zhou J, Chow L T, Ollphant A R, Gerken S C, Gregory M C, Skolnick M H, Atkin C L, Tryggvason K. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 1990; 248: 1224–7
  • Zhou J, Barker D F, Hostlkka S L, Gregory M C, Atkin C L, Tryggvason K. Single base mutation in α5(IV) collagen chain gene converting a conserved cysteine to serine in Alport syndrome. Genomics 1991; 9: 10–18
  • Boye E, Vetrie D, Flinter F, Buckle B, Pihlajaniemi T, Hämäläinen E-R, Myers J C, Bobrow M, Harris A. Major rearrangements in the α5(IV) collagen gene in three patients with Alport syndrome. Genomics 1991; 11: 1125–32
  • Renieri A, Seri M, Myers J C, Pihlajanieml T, Massella L, Rizzoni G, De Marchi M. De novo mutation in the COL4A5 gene converting glycine 325 to glutamic acid in Alport syndrome. Hum Mol Genet 1992; 1: 127–9
  • Renieri A, Seri M, Myers J C, Pihlajanieml T, Sessa A, Rizzoni G, De Marchi M. Alport syndrome caused by a 5′ deletion within the COL4A5 gene. Hum Genet 1992; 89: 120–1
  • Zhou J, Hertz J M, Leinonen A, Tryggvason K. Complete amino acid sequence of the human α5(IV) collagen chain and identification of a single base mutation in exon 23 converting glycine-521 in the collagenous domain to cysteine in an Alport syndrome patient. J Biol Chem 1992; 267: 12475–81
  • Zhou J, Hertz J M, Tryggvason K. Mutation in the α5(IV) collagen chain in juvenile-onset Alport syndrome without hearing loss or ocular lesions: detection by denaturing gradient gel electrophoresis of PCR product. Am J Hum Genet 1992; 50: 1291–1300
  • Smeets H J M, Melenhorst J J, Lemmink H H, Schröder C H, Nelen M R, Zhou J, Hostikka S L, Tryggvason K, Ropers H-H, Jansweijer M C E, Monnens L A H, Brunner H G, van Oost B A. Mutations in the COL4A5 gene leading to different types of Alport syndrome. Kidney Int 1992; 42: 83–8
  • Bruckner-Tuderman L. Epidermolysis bullosa. Connective tissue and its heritable disorders: molecular, genetic and medical aspects, P M Royce, B Steinmann. Wiley-Liss, New York 1992; 507–32
  • Epstein E H. Molecular genetics of epidermolysis bullosa. Science 1992; 256: 799–804
  • Uitto J, Christiano A M. Molecular genetics of the cutaneous basement membrane zone. Perspectives on epidermolysis bullosa and other blistering skin disorders. J Clin Invest 1992; 90: 687–92
  • Ryynänen M R, Knowlton R G, Parente M G, Chung L C, Chu M-L, Uitto J. Human type VII collagen: genetic linkage of the gene (COL7A1) on chromosome 3 to dominant dystrophic epidermolysis bullosa. Am J Hum Genet 1991; 49: 797–803
  • Ryynänen M, Ryynänen J, Sollberg S, Lozzo R V, Knowlton R G, Uitto J. Genetic linkage of type VII collagen (COL7A1) to dominant dystrophic epidermolysis bullosa in families with abnormal anchoring fibrils. J Clin Invest 1992; 89: 974–80
  • Hovnanian A, Duquesnoy P, Blanchet-Bardon C, Knowlton R G, Amselem S, Lathrop M, Dupertret L, Uitto J, Goossens M. Genetic linkage of recessive dystrophic epidermolysis bullosa to the type VII collagen gene. J Clin Invest 1992; 90: 1032–6
  • Christiano A M, Greenspan D S, Hoffman G C, Zhang X, Tamal Y, Lin A N, Dietz H C, Hovnanian A, Uitto J. A missense mutation in type VII collagen in recessive dystrophic epidermolysis bullosa. Nature Genet
  • Stacey A, Bateman J, Choi T, Mascara T, Cole W, Jaenisch R. Perinathal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-α1(I) collagen gene. Nature 1988; 332: 131–6
  • Bonadio J, Saunders T L, Tsai E, Goldstein S A, Morris-Winman J, Brinkley L, Dolan D F, Altschuler R A, Hawkins J E, Bateman J F, Mascara T, Jaenisch R. Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc Natl Acad Sci USA 1990; 87: 7145–9
  • Khillan J S, Olsen A S, Kontusaari S, Sokolov B, Prockop D J. Transgenic mice that express a mini-gene version of the human gene for type I procollagen (COL1A1) develop a phenotype resembling a lethal form of osteogenesis imperfecta. J Biol Chem 1991; 266: 23373–9
  • Garofalo S, Vuorio E, Metsäranta M, Rosatl R, Toman D, Vaughan J, Lozano G, Mayne R, Ellard J, Horton W, de Crombrugghe B. Reduced amounts of cartilage collagen fibrils and growth plate abnormalities in transgenic mice harboring a glycine to cysteine mutation in the mouse type II procollagen α1-chain gene. Proc Natl Acad Sci USA 1991; 88: 9648–52
  • Vandenberg P, Khillan J S, Prockop D J, Helminen H, Kontusaari S, Ala-Kokko L. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces chondrodysplasia. Proc Natl Acad Sci USA 1991; 88: 7640–4
  • Metsäranta M, Garofalo S, Decker G, Rlntala M, de Crombrugghe B, Vuorio E. Chondrodysplasia in transgenic mice harboring a 15-amino acid deletion in the triple helical domain of proα1(II) collagen chain. J Cell Biol 1992; 118: 203–12
  • Perelra R, Khillan J S, Helminen H, Hume E L, Prockop D J. Transgenic mice expressing a partially deleted gene for type I procollagen (COL1A1). A breeding line with a phenotype of spontaneous fractures and decreased bone collagen and mineral. J Clin Invest 1993; 91: 709–16
  • Helminen H J, Kiraly K, Peittari A, Tammi M I, Vandenberg P, Pereira R, Dhulipala R, Khillan J S, Ala-Kokko L, Hume E L, Prockop D J. An inbred line of transgenic mice expressing an internally deleted gene for type II procollagen (COL2A1). Young mice have a variable phenotype of a chondrodysplasia and older mice have osteoarthritic changes in joints. J Clin Invest.
  • Nakata K, Ono K, Miyazakl J-I, Olsen B R, Muragaki Y, Adachi E, Yamamura K-I, Kimura T. Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing α1(IX) collagen chains with a central deletion. Proc Natl Acad Sci USA
  • Jacenko O, Lu Valle P, Olsen B R. A dominant negative mutation in the α1 (X) collagen gene produces spondylo-metaphyseal defects in mice. Proc fourth international congress on limb development and regeneration, J Fallon, P Goetinck, R Kelley, D Stocum. Wiley-Liss, New York, (in press)
  • Wenstrup R J, Murad S, Pinnell S R. Ehlers-Danlos syndrome type VI: clinical manifestations of collagen lysyl hydroxylase deficiency. J Pediatr 1989; 115: 405–9
  • Myllylä R, Pihlajanieml T, Pajunen L, Turpeenniemi-Hujanen T, Kivirikko K I. Molecular cloning of chick lysyl hydroxylase. Little homology in primary structure to the two types of subunit of prolyl 4-hydroxylase. J Biol Chem 1991; 266: 2805–10
  • Hyland J, Ala-Kokko L, Royce P, Steinmann B, Kivirikko K I, Myllylä R. A homozygous stop codon in the lysyl hydroxylase gene in two siblings with Ehlers-Danlos syndrome type VI. Nature Genet 1992; 2: 228–31
  • Hautala T, Heikkinen J, Kivirikko Kl, Myllylä R. A large duplication in the gene for lysyl hydroxylase accounts for the type VI variant of the Ehlers-Danlos syndrome in two siblings. Genomics 1993, (in press)
  • Smith L T, Wertelecki W, Milstone L M, Petty E M, Seashore M R, Braverman I M, Jenkins T G, Byers P H. Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am J Hum Genet 1992; 51: 235–44
  • Nusgens B V, Verellen-Dumoulin C, Hermanns-Le T, De Paepe A, Nuytlnck L, Pierard G E, Laplère C. Evidence for a relationship between Ehlers-Danlos type VIIC in humans and bovine dermatosparaxis. Nature Genet 1992; 1: 214–7
  • Danks D M. Disorders of copper transport Menkes disease and the occipital horn syndrome. Connective tissue and its heritable disorders: molecular, genetic and medical aspects, P M Royce, B Steinmann. Wiley-Liss, New York 1992; 487–506
  • Kulvaniemi H, Peltonen L, Kivirikko Kl. Type IX Ehlers-Danlos syndrome and Menkes syndrome: the decreased lysyl oxidase activity is associated with a corresponding deficiency in the enzyme protein. Am J Hum Genet 1985; 37: 798–808
  • Kivirikko Kl, Savolainen E-R. Hepatic collagen metabolism and its modification by drugs. Liver drugs: from experimental pharmacology to therapeutic application, B Testa, D Perrissound. CRC Press, Boca Raton 1988; 193–222
  • Kivirikko K I, Myllylä R, Pihlajaniemi T. Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 1989; 3: 1609–17
  • Hanauske-Abel H M. Prolyl 4-hydroxylase, a target enzyme for drug development. Design of suppressive agents and the in vitro effects of inhibitors and proinhibitors. J Hepatol 1991; 13: S8–S16
  • Kivirikko K I, Helaakoskl T, Tasanen K, Vuorl K, Myllylä R, Parkkonen T, Pihlajaniemi T. Molecular biology of prolyl 4-hydroxylase. Ann NY Acad Sci 1990; 580: 132–42
  • Majamaa K, Hanauske-Abel H M, Günzler V, Kivirikko Kl. The 2-oxoglutarate binding site of prolyl 4-hydroxylase. Identification of distinct subsites and evidence for 2-oxoglutarate decarboxylation in a ligand reaction at the enzyme-bound ferrous ion. Eur J Biochem 1984; 138: 239–45
  • Bickel M, Baader E, Brocks D, Engelbart K, Günzler V, Schmidts H L, Vogel G H. Beneficial effects of inhibitors of prolyl 4-hydroxylase in CCl4-induced fibrosis of the liver in rats. J Hepatol 1991; 13: S26–S34
  • Böker K, Schwarting G, Kaule G, Günzler V, Schmidt E. Fibrosis of the liver in rats induced by bile duct ligation. Effects of inhibition of prolyl 4-hydroxylase. J Hepatol 1991; 13: S35–S40
  • Vuori K, Pihlajaniemi T, Marttila M, Kivirikko Kl. Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expression system. Proc Natl Acad Sci USA 1992; 89: 7467–70
  • Vuori K, Pihlajaniemi T, Myllylä R, Kivirikko Kl. Site-directed mutagenesis of human protein disulphide iso-merase: effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera frugiperda insect cells. EMBO J 1992; 11: 4213–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.