26
Views
17
CrossRef citations to date
0
Altmetric
Review Article

The Genetic Basis of Paediatric Heart Disease

, , &
Pages 289-300 | Published online: 08 Jul 2009

References

  • Moller J H, Allen H D, Clark E B, et al. Report of the task force on children and youth. Circulation 1992; 88: 2479–86
  • Hoffman J IE. Reflections on the past, present and future of pediatric cardiology. Cardiol Young 1994; 4: 208–23
  • Gillum R F. Epidemiology of congenital heart disease in the United States. Am Heart J 1994; 127: 919–27
  • Nora J J. Causes of CHD. Old and new modes, mechanisms, and models. Am Heart J 1993; 125: 1409–18
  • Pyeritz R E, Murphy E A. Genetics and congenital heart disease: perspectives and prospects. J Am Coll Cardiol 1989; 13: 1458–68
  • Mastaglia F L, Walton J. Skeletal Muscle Pathology. Churchill Livingstone, EdinburghScotland 1982
  • Chamberlain J S, Caskey C T. Duchenne muscular dystrophy. Current Neurology, S H Appel. Yearbook Medical Publishers, Chicago 1990; 65–103
  • Emery A EH. Duchenne Muscular Dystrophy, 2nd edn. Oxford University Press, Oxford 1993; 156, Oxford Monographs on Medical Genetics No 24
  • Hoffman E P, Brown R H, Jr, Kunkel L M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51: 919–28
  • Ervasti J M, Ohlendieck K, Kahl S D, Gaver M G, Campbell K P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 1990; 345: 315–19
  • Ervasti J M, Campbell K P. Membrane organization of the dystrophin-glycoprotein complex. Cell 1991; 66: 1121–31
  • Bies R D, Friedman D, Roberts R, Perryman M B, Caskey C T. Expression and localization of dystrophin in human cardiac Purkinje fibers. Circulation 1992; 86: 147–53
  • Bies R D, Phelps S, Cortez M D, Roberts R, Caskey C T, Chamberlain J. Human and murine dystrophin mRNA transcripts are differentially spliced during development. Nucleic Acids Res 1992; 20: 1725–31
  • Buifield G, Siller W G, Wight P AL, Moore K J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 1984; 81: 1189–92
  • Monaco A P, Bertelson C J, Liechti-Gallatl S, Moser H, Kunkel L M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2: 90–5
  • Chelly J, Gilgenkrantz H, Lambert M, et al. Effect of dystrophin gene deletions on mRNA levels and processing in Duchenne and Becker muscular dystrophies. Cell 1990; 63: 1239–48
  • Ragot T, Vincent N, Chafey P, et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 1993; 361: 647–50
  • Michels W, Moll P P, Miller F A, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 1992; 326: 77–82
  • Muntoni F, Catani G, Mateddu A, et al. Familial cardiomyopathy, mental retardation and myopathy associated with desmin-type intermediate filaments. Neuromuscul Disord 1994; 4: 233–41
  • Towbin J A, Hejtmancik F, Brink P, et al. X-Linked dilated cardiomyopathy: Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (Dystrophin) gene at the Xp21 locus. Circulation 1993; 87: 1854–65
  • Muntoni F, Cau M, Ganau A, et al. Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med 1993; 329: 921–5
  • Boyce F M, Beggs A H, Feener C, Kunkel L M. Dystrophin is transcribed in brain from a distant upstream promoter. Proc Natl Acad Sci USA 1991; 88: 1276–80
  • Bies R D, Phelps S F, Cortez M D, Roberts R, Caskey C T, Chamberlain J S. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart and brain development. Nucleic Acids Res 1992; 20: 1725–31
  • Sicinski P, Geng Y, Ryder-Cook A S, Barnard E A, Darlison M G, Barnard P J. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 1989; 244: 1578–80
  • Harper P S, Dyken P R. Myotonic Dystrophy, 2nd edn. W.B. Saunders, London 1989
  • Shaw D J, McCurrach M, Rundle S A, et al. Genomic organization and transcriptional units at the myotonic dystrophy locus. Genomics 1993; 18: 673–9
  • Brook J D, McCurrach M E, Harley H G, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992; 68: 799–808
  • Mahadevan M, Tsilfidis C, Sabourin L, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992; 255: 1253–5
  • Fu Y-H, Friedman D L, Richards S, et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 1993; 260: 235–8
  • Redman J B, Fenwick R G, Jr, Fu Y-H, Pizzuti A, Caskey C T. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA 1993; 269: 1960–5
  • Ashizawa T, Dubel J R, Harati Y. Somatic instability of CTG repeat in myotonic dystrophy. Neurology 1993; 43: 2674–8
  • La Spada A R, Wilson E M, Lubahn D B, Harding A E, Fischbeck K H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–9
  • Verkerk A J, Pieretti M, Sutcliffe J S, Fu Y H. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65: 905–14
  • Macdonald M E, Barnes G, Srinidhi J, et al. Gametic but not somatic instability of CAG repeat length in Huntington's disease. J Med Genet 1993; 30: 982–6
  • Maron B J, Epstein S E. Hypertrophic cardiomyopathy. A discussion of nomenclature. Am J Cardiol 1979; 43: 1242–4
  • Maron B J, Bonow R O, Cannon R O, et al. Hypertrophic cardiomyopathy: interrelation of clinical manifestations, pathophysiology, and therapy. N Engl J Med 1987; 316: 780–9; 844–52
  • Maron B J, Nichols P F, III, Pickle L W, Wesley Y E, Mulvihill J J. Patterns of inheritance in hypertrophic cardiomyopathy: assessment by M-mode and two-dimensional echocardiography. Am J Cardiol 1984; 53: 1087–94
  • Jarcho J A, McKenna W, Pare J AP, et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 1989; 321: 1372–8
  • Epstein N D, Cohn G M, Cyran F, Fananapazir L. Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the β-myosin heavy chain gene. Circulation 1992; 86: 345–52
  • Marian A J, Roberts R. Molecular basis of hypertrophic and dilated cardiomyopathy. Tex Heart Inst J 1994; 21: 6–15
  • Watkins H, MacRae C, Thierfelder L, et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Genet 1993; 3: 333–7
  • Thierfelder L, Watkins H, MacRae C, et al. α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994; 77: 701–12
  • Carrier L, Hengstenberg C, Beckmann J S, et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat Genet 1993; 4: 311–14
  • Cuda G, Fananapazir L, Zhu W-S, Sellers J R, Epstein N D. Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J Clin Invest 1993; 91: 2861–5
  • Marian A J, Yu Q T, Mares A, Jr, Him R, Roberts R, Perryman M B. Detection of a new mutation in the beta-myosin heavy chain gene in an individual with hypertrophic cardiomyopathy. J Clin Invest 1992; 90: 2156–65
  • Watkins H, Rosenzweig A, Hwang D-S, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 1992; 326: 1108–14
  • Fananapazir L, Epstein N D. Genotype-phenotype correlations in hypertrophic cardiomyopathy. Circulation 1994; 89: 22–32
  • Anan R, Greve G, Thierfelder L, et al. Prognostic implication of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 1994; 93: 280–5
  • Rosenzweig A, Watkins H, Hwang D S, et al. Preclinical diagnosis of familial hypertrophic cardiomyopathy by genetic analysis of blood lymphocytes. N Engl J Med 1991; 325: 1753–60
  • Shoffner J M, Wallace D C. Oxidative phosphorylation diseases. Disorders of two genomes. Adv Hum Genet 1990; 19: 267–330
  • Wallace D C. Mitotic segregation of mitochondrial DNAs in human cell hybrids and the expression of chloramphenicol resistance. Somat Cell Mol Genet 1986; 12: 41–9
  • Holt I J, Harding A E, Petty R K, Morgan-Hughes J A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990; 46: 428–33
  • Wallace D C. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61: 1175–212
  • Newman N J, Lott M T, Wallace D C. The clinical characteristics of pedigrees of Leber's hereditary optic neuropathy with the 11778 mutation. Am J Ophthalmol 1991; 111: 750–62
  • Shoffner J M, Lott M T, Lezza A M, Seibel P, Ballinger S W, Wallace D C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial tRNALys mutation. Cell 1990; 61: 931–7
  • Zeviani M, Gellera C, Antozzi C, et al. Maternally inherited myopathy and cardiomyopathy: association with mutation in mitochondrial DNA tRNALeu (UUR). Lancet 1991; 338: 143–7
  • Tanaka M, Ino H, Ohno K, et al. Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 1990; 336: 1452
  • DiMauro S, Bonilla E, Zeviani M, Nakagawa M, DeVivo D C. Mitochondrial myopathies. Ann Neurol 1985; 17: 521–38
  • Morriss J H, Eugster G S, Nora J J, et al. His bundle recordings in progressive external ophthalmoplegia. J Pediatr 1972; 81: 1167–70
  • Romano C, Gemme G, Pongiglione R. Aritmie cardiache rare dell'eta' pediatrica. II. Accessi sincopali per fibrillazione ventricolare parassistica. Clin Pediatr (Bologna) 1963; 45: 656–83
  • Ward O C. A new familial cardiac syndrome in children. J Irish Med Assoc 1964; 54: 103–6
  • Schwartz P J, Periti M, Malliani A. The long Q-T syndrome. Am Heart J 1975; 89: 378–90
  • Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J 1957; 54: 59–68
  • Weintraub R G, Gow R M, Wilkinson J L. The congenital long QT syndromes in childhood. J Am Coll Cardiol 1990; 16: 674–80
  • Moss A J, Robinson J L. Long QT syndrome. Heart Dis Stroke 1992; 1: 309–14
  • Moss A J. Measurement of the QT interval and the risk associated with QTc interval prolongation: a review. Am J Cardiol 1993; 72: 23B–25B
  • Vincent G M, Jaiswal D, Timothy K. The effect of exercise on heart rate, QT, QTc and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am J Cardiol 1991; 68: 498–503
  • Keating M T, Dunn C, Atkinson D, Timothy K, Vinvent G M, Leppert M. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 1991; 252: 704–6
  • Curran M, Atkinson D, Timothy K, et al. Locus heterogeneity of autosomal dominant long QT syndrome. J Clin Invest 1993; 92: 799–803
  • Vidaillet H J, Jr, Pressley J C, Henke E, Harrell F E, German L D. Familial occurrence of accessory atrioventricular pathways (preexcitation syndrome). N Engl J Med 1987; 317: 65–9
  • Gillette P C, Freed D, McNamara D G. A proposed autosomal dominant method of inheritance of the Wolff-Parkinson-White syndrome and supraventricular tachycardia. J Pediatrics 1978; 93: 257–8
  • Ludomirsky A, Garson A, Jr. Supraventricular tachycardia. Pediatric Arrhythmias: Electrophysiology and Pacing, P C Gillette, A Garson, Jr. W. B. Saunders, Philadelphia 1990; 384–95
  • Ardati A, Nemer M. A nuclear pathway for alpha 1-adrenergic receptor signaling in cardiac cells. EMBO J 1993; 12: 5131–9
  • McKenna W J, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 1994; 71: 215–18
  • Rampazzo A, Nava A, Danieli G A, et al. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q24-q24. Hum Mol Genet 1994; 3: 959–62
  • Morqulo L. Sur une maladie infantile et familiale caracterisee par des modifications permanentes du pouls, des attaques syncopales et épileptiformes. Arch Med Enfants 1901; 4: 467–75
  • Sarachek N S, Leonard J J. Familial heart block and sinus bradycardia. Am J Cardiol 1972; 29: 451–8
  • Brink A J, Torrington M. Progressive familial heart block—two types. S Atr Med J 1977; 52: 53–9
  • Campbell M, Emanuel R. Six cases of congenital complete heart block followed for 34–40 years. Br Heart J 1967; 29: 577–87
  • Lev M. The anatomic basis for disturbances in conduction and cardiac arrhythmias. Prog Cardiovasc Dis 1960; 2: 360–9
  • Huntingford P J. The aetiology and significance of congenital heart block. J Obstet Gynaecol Brit Emp 1960; 67: 259–64
  • Brink P A, Moolman J C, Ferreira A, et al. Genetic linkage studies of progressive familial heart block, a cardiac conduction disorder. S Afr J Sci 1994; 90: 236–40
  • Pyeritz R E, McKusick V A. The Marfan syndrome: diagnosis and management. N Engl J Med 1979; 300: 772–7
  • Sakai L Y, Keene D R, Engvall E. Fibrillin. A new 350 kD glycoprotein is a component of extracellular microfibrils. J Cell Biol 1986; 103: 2499–509
  • Dietz H C, Cutting G R, Pyeritz R E, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352: 337–9
  • Dietz H C, Valle D, Francomano C A, Kendzior R J, Pyeritz R E, Cutting G R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science 1993; 259: 680–3
  • Dietz H C, McIntosh I, Sakai L Y, et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 1993; 17: 468–75
  • Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet 1994; 6: 64–9
  • Tsipouras P, Del Mastro R, Sarfarazi M, et al. Genetic linkage of the Marfan syndrome, ectopia lentis and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5. N Engl J Med 1992; 326: 905–9
  • Bolleau C, Jondeau G, Babron M-C, et al. Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomalies not linked to the fibrillin genes. Am J Hum Genet 1993; 53: 46–54
  • O'Connor W N, Davis J B, Geissler R, Cottrill C M, Noonan J A, Todd E P. Supravalvular aortic stenosis. Arch Pathol Lab Med 1985; 109: 179–85
  • Ewart A K, Morris C A, Ensing G J, et al. A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. Proc Natl Acad Sci USA 1993; 90: 3226–30
  • Curran M E, Atkinson D L, Ewart A K, Morris C A, Leppert M F, Keating M T. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 1993; 73: 159–68
  • Ewart A K, Jin W, Atkinson D, Morris C A, Keating M T. SVAS associated with a deletion disrupting the elastin gene. J Clin Invest 1994; 93: 1071–7
  • Ewart A K, Morris C A, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nature Genet 1993; 5: 11–16
  • Raisher B D, Dowton S B, Grant J W. Father and two children with total anomalous pulmonary venous return. Am J Hum Genet 1991; 40: 105–6
  • Lo K S, Loventhal J P, Walton J A. Familial Ebstein's anomaly. Cardiology 1979; 64: 246–55
  • Cousineau A J, Lauer R M, Pierpont M E, et al. Linkage analysis of autosomal dominant atrioventricular canal defects: exclusion of chromosome 21. Hum Genet 1994; 93: 103–8
  • Whittemore R, Wells J A, Castellsague X. A second-generation study of 427 probands with CHD and their 837 children. J Am Coll Cardiol 1994; 23: 1459–67
  • Basson C T, Cowley G S, Solomon S D, et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 1994; 330: 885–91
  • Blum-Hoffman E, Rehder E, Langenbeck U. Skeletal anomalies in trisomy 21 as an example of amplified developmental instability in chromosome disorders: a histological study on the feet of 21 mid-trimester fetuses with trisomy 21. Am J Med Genet 1987; 29: 155–63
  • Korenberg J R, Kawashima H, Pulst S M, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Hum Genet 1990; 47: 236–56
  • Korenberg J R, Pulst S M, Gerwehr S. Advances in the understanding of chromosome 21 and Down syndrome. Down Syndrome—Advances in Medical Care, I T Lott, E E McCoy. Wiley-Liss, Inc, New York, NY 1992; 3–12
  • Holtzman D M, Epstein C J. The molecular genetics of Down syndrome. Mol Genet Med 1992; 2: 105–20
  • Pash J, Popescu N, Matocha M, Rapoport S, Bustin M. Chromosomal protein HMG-14 gene maps to the Down syndrome region of human chromosome 21 and is overexpressed in mouse trisomy 16. Proc Natl Acad Sci USA 1990; 87: 3836–40
  • Minc-Golomb D, Knobler H, Groner Y. Gene dosage of CuZnSOD and Down's syndrome: diminished prostaglandin synthesis in human trisomy 21, transfected cells and transgenic mice. EMBO J 1991; 10: 2119–24
  • Kurnit D M, Aidridge J F, Matsuoka R, Matthysse S. Increased adhesiveness of trisomy 21 cells and atrioventricular canal malformations in Down syndrome: a stochastic model. Am J Med Genet 1985; 20: 385–99
  • Dickson M C, Slager H G, Duffie E, Mummery C L, Akhurst R J. RNA and protein localizations of TGFβ2 in the early mouse embryo suggest an involvement in cardiac development. Development 1993; 117: 625–39
  • Wilson L, Curtis A, Korenberg J R, et al. A large, dominant pedigree of atrioventricular septal defect (AVSD): exclusion from the down syndrome critical region on chromosome 21. Am J Hum Genet 1993; 53: 1262–8
  • Marino B, Reale A, Giannotti A, Digilio M C, Dallapiccola B. Nonrandom association of atrioventricular canal and del (8p) syndrome. Am J Med Genet 1992; 42: 424–7
  • Van Mierop L HS, Kutsche L M. Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 1986; 58: 133–7
  • Goldberg R, Motzkin B, Marion R, Scambler P J, Shprintzen R J. Velo-cardio-facial syndrome: a review of 120 patients. Am J Med Genet 1993; 45: 313–19
  • Jedele K B, Michels W, Puga F J, Feldt R H. VCFS associated with ventricular septal defect, pulmonary atresia, and hypoplastic pulmonary arteries. Pediatrics 1992; 89: 915–19
  • Nishibatake M, Kirby M L, van Mierop L H. Pathogenesis of persistent truncas arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 1987; 75: 255–64
  • Chisaka O, Capecchi M R. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 1991; 350: 473–83
  • Wilson D L, Burn J, Scambler P, Goodship J. DiGeorge syndrome: part of CATCH-22. J Med Genet 1993; 30: 852–6
  • de la Chapelle A, Herva R, Koivisto M, Aula P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 1981; 57: 253–6
  • Carey A H, Kelly D, Halford S, et al. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet 1992; 51: 964–70
  • Driscoll D A, Budarf M L, Emanuel B S. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1992; 50: 924–33
  • Driscoll D A, Spinner N B, Budarf M L, et al. Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am J Med Genet 1992; 44: 261–8
  • Driscoll D A, Salvin J, Sellinger B, et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet 1993; 30: 813–17
  • Burn J, Takao A, Wilson D, et al. Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22q11. J Med Genet 1993; 30: 822–4
  • Goldmuntz E, Driscoll D, Budarf M L, et al. Microdeletions of chromosomal region 22q11 in patients with congenital conotruncal cardiac defects. J Med Genet 1993; 30: 807–12
  • Aubry M, Demczuk S, Desmaze C, et al. Isolation of a zinc finger gene consistently deleted in DiGeorge syndrome. Hum Mol Genet 1993; 2: 1583–7
  • Halford S, Wadey R, Roberts C, et al. Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease. Hum Mol Genet 1993; 2: 2099–107
  • Greenberg F, Elder F FB, Haffner P, Northrup H, Ledbetter D H. Cytogenetic findings in a prospective series of patients with DiGeorge anomaly. Am J Hum Genet 1988; 43: 605–11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.