134
Views
51
CrossRef citations to date
0
Altmetric
Review Article

Molecular Pharmacology of α2-adrenoceptor Subtypes

, &
Pages 439-449 | Published online: 20 Nov 2010

References

  • Aantaa R, Scheinin M. Alpha2-adrenergic agents in anaesthesia. Acta Anaesthesiol Scand 1993; 37: 433–48
  • Maze M, Tranquilli W. Alpha-2 adrenoceptor agonists: defining the role in clinical anaesthesia. Anesthesiology 1991; 74: 581–605
  • Hoffmann B B, Lefkowitz R J. Catecholamines and sympathomimetic drugs. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th edn, A G Gilman, T W Rall, A S Nies, P Taylor. Pergamon, New York 1990; 187–220
  • Ahlquist R P. A study of adrenotropic receptors. Am J Physiol 1948; 153: 586–600
  • Harrison J K, Pearson W R, Lynch K R. Molecular characterization of α1- and α2-adrenoceptors. Trends Pharmacol Sci 1991; 12: 62–7
  • Bylund D B, Eikenberg D C, Hieble J P, et al. IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 1994; 46: 121–36
  • Regan J W, Cotecchia S. The α-adrenergic receptors: new subtypes, pharmacology, and coupling mechanisms. Molecular Biology of G-protein-coupled Receptors, M R Brann. Birkháuser, Boston 1992; 76–112
  • Ruffolo R R, Nichols A J, Stadel J M, Hieble J P. Structure and function of α-adrenoceptors. Pharmacol Rev 1991; 43: 475–505
  • MacKinnon A, Spedding M, Brown C M. α2-Adrenoceptors: more subtypes but fewer functional differences. Trends Pharmacol Sci 1994; 15: 119–23
  • Regan J W, Kobilka T S, Yang-Feng T L, Caron M G, Lefkowitz R J, Kobilka B K. Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype. Proc Natl Acad Sci USA 1988; 85: 6301–5
  • Kobilka B K, Matsui H, Kobilka T S, et al. Cloning, sequencing, and expression of the gene coding for the human platelet α2-adrenergic receptor. Science 1987; 238: 650–6
  • Lomasney J W, Lorenz W, Allen L F, et al. Expansion of the α2-adrenergic receptor family: cloning and characterization of a human α2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci USA 1990; 87: 5094–8
  • Bylund D B, Blaxall H S, Iversen L J, Caron M G, Lefkowitz R J, Lomasney J W. Pharmacological characteristics of α2-adrenergic receptors: Comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol 1992; 42: 1–5
  • Lanier S M, Downing S, Duzic E, Homey C J. Isolation of rat genomic clones encoding subtypes of the α2-adrenergic receptor. J Biol Chem 1991; 266: 10470–8
  • Zeng D W, Harrison J K, D'Angelo D D, et al. Molecular characterization of rat α2B-adrenergic receptor. Proc Natl Acad Sci USA 1990; 87: 3102–6
  • Chalberg S C, Duda T, Rhine J A, Sharma R K. Molecular cloning, sequencing and expression of an α2-adrenergic receptor complementary DNA from rat brain. Mol Cell Biochem 1990; 97: 161–72
  • Flordellis C S, Handy D E, Bresnahan M R, Zannis V I, Gavras H. Cloning and expression of a rat brain α2B-adrenergic receptor. Proc Natl Acad Sci USA 1991; 88: 1019–23
  • Handy D E, Flordellis C S, Bogdanova N N, Bresnahan M R, Gavras H. Diverse tissue expression of rat α2-adrenergic receptor genes. Hypertension 1993; 21: 861–5
  • Voigt M M, McCune S K, Kanterman R Y, Felder C C. The rat α2-C4 adrenergic receptor gene encodes a novel pharmacological subtype. FEBS Lett 1991; 278: 45–50
  • Chhajlani V, Rangel N, Uhlén S, Wikberg J ES. Identification of an additional gene belonging to the α2adrenergic receptor family in the human genome by PCR. FEBS Lett 1991; 280: 241–4
  • Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B K. Cloning of two mouse genes encoding α2-adrenergic receptor subtypes and identification of a single amino acid in the mouse α2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol 1992; 42: 16–27
  • Chruscinski A J, Link R E, Daunt D A, Barsh G S, Kobilka B K. Cloning and expression of the mouse homolog of the human α2-C2 adrenergic receptor. Biochem Biophys Res Commun 1992; 186: 1280–7
  • Chen W M, Chang A C, Shie B J, Chang Y H, Chang N C. Molecular cloning and characterization of a mouse α2-C2 adrenoceptor subtype gene. Biochim Biophys Acta 1992; 1171: 219–23
  • Guyer C A, Horstman D A, Wilson A L, Clark J D, Cragoe E J, Jr, Limbird L E. Cloning, sequencing, and expression of the gene encoding the porcine α2-adrenergic receptor. J Biol Chem 1990; 265: 17307–17
  • Svensson S PS, Bailey T J, Pepperl D J, et al. Cloning and expression of a fish α-adrenoceptor. Br J Pharmacol 1993; 110: 54–60
  • Biaxall H S, Cerutis D R, Hass N A, Iversen L J, Bylund D B. Cloning and expression of the α2-adrenergic receptor from the OK cell line. Mol Pharmacol 1994; 45: 176–81
  • Biaxall H S, Heck D A, Bylund D B. Molecular determinants of the alpha-2D adrenergic receptor subtype. Life Sci 1993; 53: 255–9
  • Kurose H, Arriza J L, Lefkowitz R J. Characterization of α2-adrenergic receptor subtype-specific antibodies. Mol Pharmacol 1993; 43: 444–50
  • Birnbaumer L, Abramowitz J, Brown A M. Receptor-effectors coupling by G proteins. Biochim Biophys Acta 1990; 1031: 163–224
  • Dohlman H G, Thorner J, Caron M G, Lefkowitz R J. Model systems for the study of seven-trans-membrane-segment receptors. Annu Rev Biochem 1991; 60: 653–88
  • Pepperl D J, Regan J W. Adrenergic receptors. Handbook of Receptors and Channels, S J Peroutka. CRC Press, Boca Raton, FL 1994; 45–78
  • Vanscheeuwijck P, Huang Y, Schullery D, Regan J W. Antibodies to a human α2-C10 adrenergic receptor fusion protein confirm the cytoplasmic orientation of the V-VI loop. Biochem Biophys Res Commun 1993; 190: 340–6
  • Cronet P, Sander C, Vriend G. Modeling of transmembrane seven helix bundles. Protein Eng 1993; 6: 59–64
  • Hoflack J, Trump-Kallmeyer S, Hibert M. Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors. Trends Pharmacol Sci 1994; 15: 7–9
  • Lehmann J, Koenig-Bérard E, Vitou P. The imidazoline-preferring receptor. Life Sci 1989; 45: 1609–15
  • Sjöholm B, Voutilainen R, Luomala K, Savola J-M, Scheinin M. Characterization of [3H]atipamezole as a radioligand for α-adrenoceptors. Eur J Pharmacol 1992; 215: 109–17
  • Michel M C, Insel P A. Are there multiple imidazoline binding sites?. Trends Pharmacol Sci 1989; 10: 342–4
  • Sjöholm B, Savola J-M, Scheinin M. Non-adrenergic binding of [3H]atipamezole in rat lung: a novel imidazole binding site?. Ann NY Acad Sci, (in press)
  • Eason M G, Kurose H, Holt B D, Raymond J R, Liggett S B. Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects: Subtype-selective coupling of α2-C10, α2-C4, and α2-C2 adrenergic receptors to Gi and Gs. J Biol Chem 1992; 267: 15795–801
  • Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for βγ dimers as well as α subunits. Cell 1992; 71: 1069–72
  • Kurose H, Regan J W, Caron M G, Lefkowitz R J. Functional interactions of recombinant α2-adrenergic receptor subtypes and G proteins in reconstituted phospholipid vesicles. Biochemistry 1991; 30: 3335–41
  • Tang W J, Gilman A G. Adenylyl cyclases. Cell 1992; 869–72
  • Marjamäki A, Ala-Uotila S, Luomala K, et al. Stable expression of recombinant human α2-adrenoceptor subtypes in two mammalian cell lines: characterization with [3H]rauwolscine binding, inhibition of adenylate cyclase, and RNase protection assay. Biochim Biophys Acta 1992; 1134: 169–77
  • Jansson C C, Marjamäki A, Luomala K, Savola J-M, Scheinin M, Åkerman K EO. Coupling of human α2-adrenoceptor subtypes to regulation of cAMP production in transfected S115 cells. Eur J Pharmacol 1994; 266: 165–74
  • Fraser C M, Arakawa S, McComble W R, Venter J C. Cloning, sequence analysis, and permanent expression of a human α2-adrenergic receptor in Chinese hamster ovary cells. J Biol Chem 1989; 264: 11754–61
  • Jones S B, Halenda S P, Bylund D B. α2-Adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms. Mol Pharmacol 1991; 39: 239–45
  • Isom L L, Limbird L E. What happens next? A hypothesis linking the biochemical and electrophysiological sequelae of alpha-2 adrenergic receptor occupancy with the diverse receptor-mediated physiological effects. The Alpha-2 Adrenergic Receptors, L E Limbird. Humana Press, Clifton, NJ 1988; 323–63
  • Uhlen S, Persson M L, Alari L, Post C, Axelsson K L, Wikberg J E. Antinociceptive actions of alpha2-adrenoceptor agonists in the rat spinal cord: Evidence for antinociceptive alpha2-adrenoceptor subtypes and dissociation of antinociceptive alpha2-adrenoceptors from cyclic AMP. J Neurochem 1990; 55: 1905–14
  • Correa-Sales C, Nacif-Coelho C, Reid K, Maze M. Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an alpha2 agonist in the rat. J Pharmacol Exp Ther 1992; 263: 1046–9
  • North R A. Drug receptors and the inhibition of nerve cells. Br J Pharmacol 1989; 98: 13–28
  • Doze V A, Chen B-X, Tlnklenberg J A, Segal I S, Maze M. Pertussis toxin and 4-aminopyridine differentially affect the hypnotic-anaesthetic action of dexmedetomidine and pentobarbital. Anesthesiology 1990; 73: 304–7
  • Armstrong D L, White R E. An enzymatic mechanism for potassium channel stimulation through pertussitoxin-sensitive G-proteins. Trends Neurosci 1992; 15: 403–8
  • Surprenant A, Horstman D A, Akrabali H, Limbird L E. A point mutation of the α2-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 1992; 257: 977–80
  • Lipscombe D, Kongsamut S, Tsien R W. α-Adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 1989; 340: 639–42
  • Hescheler J, Rosenthal W, Trautweln W, Schultz G. The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 1987; 325: 445–7
  • Duzik E, Lanier S M. Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. III. Coupling of α2-adrenergic receptor subtypes in a cell type-specific manner. J Biol Chem 1992; 267: 24045–52
  • Federman A D, Conklin B R, Schrader K A, Reed R R, Bourne H R. Hormonal stimulation of adenylyl cyclase through Gi protein βγ subunits. Nature 1992; 356: 159–61
  • Unnerstall J R, Kopajtic T A, Kuhar M J. Distribution of α2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res Rev 1984; 77: 69–101
  • Boyajian C L, Loughlln S E, Leslie F M. Anatomical evidence for alpha-2 adrenoceptor heterogeneity: differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 1987; 241: 1079–91
  • Holets V R. The anatomy and function of noradrenaline in the mammalian brain. The Pharmacology of Noradrenaline in the Central Nervous System, D J Heal, C A Marsden. Oxford University Press, New York 1990; 1–40
  • Jones C R, Hoyer D, Palacios J M. Adrenoceptor autoradiography. The Pharmacology of Noradrenaline in the Central Nervous System, D J Heal, C A Marsden. Oxford University Press, New York 1990; 41–75
  • Hudson A L, Mallard N J, Tyacke R, Nutt D J. 3H-RX821002: a highly selective ligand for the identification of α2-adrenoceptors in rat brain. Mol Neuropharmacol 1992; 1: 219–29
  • Probst A, Cortés R, Palacios J M. Distribution of α2-adrenergic receptors in the human brain stem: an autoradiographic study using [3H]p-aminoclonidine. Eur J Pharmacol 1985; 106: 477–88
  • Aston-Jones G, Shipley M T, Chouvet G, . Afferent regulation of Locus Coeruleus neurons: anatomy, physiology and pharmacology. The Locus coeruleus. Progress in Brain Research, G Paxinos, et al. Elsevier, Amsterdam 1991; Vol. 88: 47–75
  • Cedarbaum J M, Aghajanian G K. Catecholamine receptors on locus coeruleus neurons: pharmacological characterization. Eur J Pharmacol 1977; 44: 375–85
  • DeSarro G B, Ascloti C, Froio F, Libri V, Nisticò G. Evidence that locus coeruleus is the site where clonidine and drugs acting at α2- and α2-adrenoceptors affect sleep and arousal mechanisms. Br J Pharmacol 1987; 90: 675–85
  • Correa-Sales C, Rabin B C, Maze M. A hypnotic response to dexmedetomidine, an α2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992; 76: 948–52
  • Scheinin M, Schwinn D A. The locus coeruleus: site of hypnotic actions of α2-adrenoceptor agonists?. Anesthesiology 1992; 76: 873–5
  • De Jong W, Nijkamp F P. Centrally induced hypotension and bradycardia after administration of α-methylnoradrenaline into the area of the nucleus tractus solitarii of the rat. Br J Pharmacol 1976; 58: 593–8
  • van Zwieten P A. Drugs interacting with alpha adrenoceptors. Cardiovasc Drugs Ther 1989; 3: 121–33
  • Isaac L. Clonidine in the central nervous system: site and mechanism of hypotensive action. J Cardiovasc Pharmacol 1980; 2: S5–19
  • Punnen S, Urbanski R, Krieger A J, Sapru H N. Ventrolateral medullary pressor area: site of hypotensive action of clonidine. Brain Res 1987; 422: 336–46
  • Ernsberger P, Meeley M P, Mann J J, Reis D J. Clonidine binds to imidazoline binding sites as well as α2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 1987; 134: 1–13
  • Bricca G, Dontenwlll M, Molines A, Feldman J, Belcourt A, Bousquet P. Evidence for the existence of a homogenous population of imidazoline receptors in the human brainstem. Eur J Pharmacol 1988; 150: 401–2
  • Bricca G, Dontenwill M, Molines A, Feldman J, Belcourt A, Bousquet P. The imidazoline preferring receptor: binding studies in bovine, rat and human brainstem. Eur J Pharmacol 1989; 162: 1–9
  • Lehmann J, Koenlg-Bérard E, Vitou P. The imidazoline-preferring receptor. Life Sci 1989; 45: 1609–15
  • Unnerstall J R, Kuhar M J. Mapping the α-adrenergic receptor in the central nervous system: A guide to structure and function. Epinephrine in the Central Nervous System, J M Stolk, D C U'Prichard, K Fuxe. Oxford University Press, New York 1984; 45–59
  • Sullivan A F, Dashwood M R, Dickenson A H. α2-Adrenoceptor modulation of nociception in rat spinal cord: location, effects and interactions with morphine. Eur J Pharmacol 1987; 138: 169–77
  • Ossipov M H, Suarez L J, Spaulding T C. Antinociceptive interactions between alpha2-adrenergic and opiate agonists at the spinal level in rodents. Anesth Analg 1989; 68: 194–200
  • Spaulding T C, Fielding S, Venafro J J, Lal H. Antinociceptive activity of clonidine and its potentiation of morphine analgesia. Eur J Pharmacol 1979; 58: 19–25
  • Kuraishi Y, Hirota N, Sato Y, Kaneko S, Satoh M, Takagi H. Noradrenergic inhibition of the release of substance P from the primary afferents in the rabbit spinal dorsal horn. Brain Res 1985; 359: 177–82
  • Ruffolo R R, Nichols A J, Hieble J P. Functions mediated by alpha-2 adrenergic receptors. The Alpha-2 Adrenergic Receptors, L E Limbird. Humana Press, Clifton, NJ 1988; 187–280
  • Docherty J R. The pharmacology of α1- and α2-adrenoceptors: evidence for and against a further subdivision. Pharmacol Ther 1989; 44: 241–84
  • Nichols A J, Ruffolo R R. Functions mediated by α-adrenoceptors. α-Adrenoceptors: Molecular Biology, Biochemistry and Pharmacology, R R Ruffolo. Karger, Basel 1991; 115–79
  • Langer S Z, Hicks P E. Alpha-adrenoceptor subtypes in blood vessels: Physiology and pharmacology. J Cardiovasc Pharmacol 1984; 6: S547–58
  • Nielsen H, Thorn S M, Hughes A D, Martin G M, Mulvany M J, Sever P S. Postjunctional α2-adrenoceptors mediate vasoconstriction in human subcutaneous resistance vessels. Br J Pharmacol 1989; 97: 829–34
  • Nielsen H, Mortensen F V, Mulvany M J. Responses to noradrenaline in human subcutaneous resistance arteries are mediated by both α1-and α2-adrenoceptors. Br J Pharmacol 1990; 99: 31–4
  • Kopia G A, Kopaciewicz L J, Ruffolo R R. Alpha adrenoceptor regulation of coronary artery blood flow in normal and stenotic canine coronary arteries. J Pharmacol Exp Ther 1986; 239: 641–7
  • Ishikawa Y, Umemura S, Uchino K, et al. Identification of an alpha2-adrenoceptor in human coronary arteries by radioligand binding assay. Life Sci 1991; 48: 2513–8
  • Bockman C S, Jeffries W B, Abel P W. Binding and functional characterization of alpha-2 adrenergic receptor subtypes on pig vascular endothelium. J Pharmacol Exp Ther 1993; 276: 1126–33
  • Bloor B C, Schmeling W R. Cardiovascular effects of alpha-2-adrenoceptors. Anaesth Pharmacol Rev 1993; 1: 246–62
  • Kyozuka M, Crankshaw D J, Berezin I, Kwan C Y, Daniel E E. Alpha-2 adrenoceptors on nerves and muscles of rat uterus. J Pharmacol Exp Ther 1988; 244: 1128–38
  • Connaughton S, Docherty J R. No evidence for differences between pre-and postjunctional α2-adrenoceptors in the periphery. Br J Pharmacol 1990; 99: 97–102
  • Connaughton S, Docherty J R. Functional evidence for heterogeneity of peripheral prejunctional α2-adrenoceptors. Br J Pharmacol 1990; 101: 285–90
  • Clare K A, Scrutton M C, Thompson N T. Effects of α2-adrenoceptor agonists and of related compounds on aggregation of, and on adenylate cyclase activity in, human platelets. Br J Pharmacol 1984; 82: 467–76
  • Pettinger W A, Umemura S, Smyth D D, Jeffries W B. Renal α2-adrenoceptors and the adenylate cyclase-cAMP system: biochemical and physiological interactions. Am J Physiol 1987; 252: F199–208
  • Meister B, Dagerlund Å, Nicholas A P, Hökfelt T. Patterns of messenger RNA expression for adrenergic receptor subtypes in the rat kidney. J Pharmacol Exp Ther 1994; 268: 1605–11
  • John G W, Doxey J-C, Walter D S, Reid J L. The role of α-and β-adrenoceptor subtypes in mediating the effects of catecholamines on fasting glucose and insulin concentrations in the rat. Br J Pharmacol 1990; 100: 699–704
  • Kather H, Simon B. Adrenoceptor of the alpha2-subtype mediating inhibition of the human fat cell adenylate cyclase. Eur J Clin Invest 1981; 11: 111–4
  • Struthers A D, Burrin J M, Brown M J. Exercise-induced increases in plasma catecholamines and growth hormone are augmented by selective α2-adrenoceptor blockade in man. Neuroendocrinology 1986; 44: 22–8
  • Grossman A, Weerasuriya K, Al-Damluji S, Turner P, Besser G M. Alpha2-adrenoceptor agonists stimulate growth hormone secretion but have no acute effects on plasma Cortisol under basal conditions. Horm Res 1987; 25: 65–71
  • Kallio A, Koulu M, Scheinin H, Viikari J, Scheinin M. Acute effects of medetomidine, a selective α2-adrenoceptor agonist, on pituitary hormone and Cortisol secretion in man. Acta Endocrinol 1988; 119: 11–5
  • Green G J, Wilson H, Yates M S. The effect of clonidine on centrally and peripherally evoked submaxillary salivation. Eur J Pharmacol 1979; 53: 297–300
  • Go C G, Aoki C, Cartano O, Kurose H, Lefkowitz R J. Immunocytochemical localization of α2A− α2B− and α2C-adrenergic receptors in brains of rat and monkey. Soc Neurosci Abstr 1992; 18: 196.4
  • Perälä M, Hirvonen H, Kalimo H, et al. Differential expression of two α2-adrenergic receptor subtype mRNAs in human tissues. Mol Brain Res 1992; 16: 57–63
  • Nicholas A P, Pieribone V, Hökfelt T. Distribution of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 1993; 328: 575–94
  • Rosin D L, Stronetta R L, Norton F R, et al. Immunohistochemical localization of α2-adrenergic receptors in catecholaminergic and other brainstem neurons in the rat. Neuroscience 1993; 56: 139–55
  • Scheinin M, Lomasney J W, Hayden-Hixson D M, et al. Distribution of α2-adrenergic receptor subtype gene expression in rat brain. Mol Brain Res 1994; 21: 133–49
  • Lorenz W, Lomasney J W, Collins S, Regan J W, Caron M G, Lefkowitz R J. Expression of three α2-adrenergic receptor subtypes in rat tissues: Implications for α2 receptor classification. Mol Pharmacol 1990; 38: 599–603
  • Lawhead R G, Blaxall H S, Bylund D B. α-2A is the predominant α-2 adrenergic receptor subtype in human spinal cord. Anesthesiology 1992; 77: 983–91
  • Stafford-Smith M, Schambra U B, Page S O, Hulette C, Schwinn D A. α2-Adrenergic receptors in human spinal cord: Specific localized expression of mRNA encoding α2-adrenergic receptor subtypes at four distinct levels. Anesthesiology 1994; 81(Suppl 3A)A1491

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.