243
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Significance of ion transport during lung development and in respiratory disease of the newborn

&
Pages 134-142 | Published online: 08 Jul 2009

References

  • Burri P H. Fetal and postnatal development of the lung. Annu Rev Physiol 1984; 46: 617–28
  • Adamson I YR. Development of lung structure. The Lung: Scientific Foundations, R G Crystal, J B West, P J Barnes, N S Cherniack, E R Weibel. Raven Press, New York 1991; 663–70
  • Bland R D, Nielson D W. Developmental changes in lung epithelial ion transport and liquid movement. Annu Rev Physiol 1992; 54: 373–94
  • Olver R E, Schneeberger E E, Walters D V. Epithelial solute permeability, ion transport and tight junction morphology in the developing lung of the fetal lamb. J Physiol 1981; 315: 395–412
  • Olver R E, Strang L B. Ion fluxes across pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol 1974; 241: 327–57
  • Adams F H, Fujiwara T, Rowshan G. The nature and origin of the fluid in fetal lamb lung. J Pediatr 1963; 63: 881–8
  • Jost A, Policard A. Contribution expérimental a ľétude du development prénatal du poumon chez la lapin. Archs Anat Microsc 1948; 37: 323–32
  • Orzalesi M, Motoyama M, Jacobson H N, Kikkawa Y, Reynolds E OR, Cook C D. The development of lung liquid in fetal goats. Pediatrics 1965; 35: 373–81
  • Thorn J, Perks A M. The effects of furosemide and bumetanide on lung liquid production by in vitro lungs from fetal guinea pigs. Can J Physiol Pharmacol 1990; 68: 1131–5
  • Walters D V. Fetal lung liquid: secretion and absorption. Fetus and Neonate: Physiology and Clinical Application. Volume 2: Breathing, M A Hanson, J AD Spencer, C H Rodeck, D Walters. Cambridge University Press, Cambridge 1994; 43–62
  • Adamson T M, Boyd R DH, Piatt H S, Strang L B. Composition of alveolar liquid in the fetal lamb. J Physiol (Lond) 1969; 204: 159–68
  • O'Brodovich H, Merritt T A. Bicarbonate concentration in rhesus monkey and guinea pig fetal lung liquid. Am Rev Respir Dis 1992; 146: 1613–4
  • Strang L B. Fetal lung liquid: secretion and reabsorption. Physiol Rev 1991; 71: 991–1016
  • Ballard S T, Boucher R C, Gatzy J T, Krochmal E M, Yankaskas J R. Volume and ion transport by fetal rat alveolar and tracheal epithelia in submersion culture. Am J Physiol 1989; 256: F397–407
  • Carlton D P, Cummings J J, Chapman D L, Poulain F R, Bland R D. Ion transport regulation of lung liquid secretion in foetal lambs. J Dev Physiol 1992; 17: 99–107
  • Cassin S, Gausse G, Perks A M. The effects of bumetanide and furosemide on lung liquid secretion in fetal sheep. Proc Soc Exp Biol Med 1986; 181: 427–31
  • McCray P B, Welsh M K. Developing fetal alveolar epithelial cells secrete fluid in primary culture. Am J Physiol 1991; 260: L494–500
  • Kemp P J, MacGregor G G, Olver R E. G protein-regulated large-conductance chloride channels in freshly isolated fetal type II alveolar epithelial cells. Am J Physiol 1993; 265: L323–9
  • Murray C B, Morales M M, Flotte T R, McGrath-Morrow S A, Guggino W B, Zeitlin P L. C1C-2: a developmentally dependent chloride channel expressed in the fetal lung and downregulated after birth. Am J Respir Cell Mol Biol 1995; 12: 597–604
  • McCray P B, Jr, Reenstra W W, Louie E, Johnson J, Bettencourt J D, Bastacky J. Expression of CFTR and presence of cAMP-mediated fluid secretion in human fetal lung. Am] Physiol 1992; 262: L472–81
  • MacLeod R J, Hamilton J R, Kopelman H, Sweezey N B. Developmental differences of cystic fibrosis transmembrane conductance regulator functional expression in isolated rat fetal distal airway epithelial cells. Pediatr Res 1994; 35: 45–9
  • Barker P M, Brigman K K, Paradiso A M, Boucher R C, Gatzy J T. CI− secretion by trachea of CFTR (+/-) and (-/-) fetal mouse. Am J Respir Cell Mol Biol 1995; 13: 307–13
  • Snouwaert J N, Brigman K, Latour A M, et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–8
  • Brown M J, Olver R E, Ramsden C A, Strang L B, Walters D V. Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol 1983; 344: 137–52
  • Alcorn D, Adamson T M, Lambert T F, Maloney J E, Ritchie B C, Robinson P M. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 1977; 123: 649–60
  • Scurry J P, Adamson T M, Cussen L J. Fetal lung growth in laryngeal atresia and tracheal agenesis. Aust Paediatr J 1989; 25: 47–51
  • Moessinger A C, Harding R D, Adamson T M, Singh M, Kiu G T. Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Invest 1990; 86: 1270–7
  • Nardo L, Hooper S B, Harding R. Lung hypoplasia can be reversed by short-term obstruction of the trachea in fetal sheep. Pediatr Res 1995; 38: 690–6
  • Souza P, O'Brodovich H, Post M. Lung fluid restriction affects growth, but not airway branching of embryonic rat lung. Int J Dev Biol 1995; 39: 629–37
  • Olver R E, Ramsden C A, Strang L B, Walters D V. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lung. J Physiol 1986; 376: 321–40
  • Hooper S B, Wallace M J, Harding R. Amiloride blocks the inhibition of fetal lung liquid secretion caused by AVP but not by asphyxia. J Appl Physiol 1993; 74: 111–5
  • Chapman D L, Carlton D P, Cummings J J, Poulain F R, Bland R D. Intrapulmonary terbutaline and aminophylline decrease lung liquid in fetal lambs. Pediatr Res 1991; 29: 357–61
  • O'Brodovich H, Hannam V, Rafii B. Sodium channel but neither Na+-H+ nor Na-glucose symport inhibitors slow neonatal lung water clearance. Am J Respir Cell Mol Biol 1991; 5: 377–84
  • Cott G R. Modulation of bioelectric properties across alveolar type II cells by substratum. Am J Physiol 1989; 257: C678–88
  • Orser B A, Bertlik M, Fedorko L, O'Brodovich H. Cation selective channel in fetal alveolar type II epithelium. Biochim Biophys Acta 1991; 1094: 19–26
  • Barker P M, Boucher R C, Yankaskas J R. Bioelectric properties of cultured monolayers from epithelium of distal human fetal lung. Am J Physiol 1995; 268: L270–7
  • Rao A K, Cott G R. Ontogeny of ion transport across fetal pulmonary epithelial cells in monolayer culture. Am J Physiol 1991; 261: L178–87
  • Matalon S, Bauer M L, Benos D J, et al. Fetal lung epithelial cells contain two populations of amiloride-sensitive Na+ channels. Am J Physiol 1993; 264: L357–64
  • Fyfe G K, Kemp P J, Cragoe E J, Jr, Olver R E. Conductive cation transport in apical membrane vesicles prepared from fetal lung. Biochim Biophys Acta 1994; 1224: 355–64
  • Tohda H, Foskett K J, O'Brodovich H, Marunaka Y. Cl regulation of a Ca2+-activated nonselective cation channel in β-agonist-treated fetal distal lung epithelium. Am J Physiol 1994; 266: C104–9
  • MacGregor G G, Olver R E, Kemp P J. Amiloride-sensitive Na* channels in fetal type II pneumocytes are regulated by G proteins. Am J Physiol 1994; 267: Ll-8
  • O'Brodovich H M. Immature epithelial Na+ channel expression is one of the pathogenetic mechanisms leading to human neonatal respiratory distress syndrome. Proc Assoc Am Physicians 1996; 108: 345–55
  • Ruddy M K, Drazen J M, Pitkanen O M, O'Brodovich H M, Harris H W. Aquaporin-4 is expressed in rat fetal distal lung epithelial cells (FDLE) where it may function in Na* mediated water reabsorption during the perinatal period (abstract). Am J Respir Crit Care Med 1996; 153: A2321
  • Umenishi F, Carter E P, Yang B, Oliver B, Matthay M A, Verkman A S. Sharp increase in rat lung water channel expression in the perinatal period. Am J Respir Cell Mol Biol 1996; 15: 673–9
  • Canessa C M, Schild L, Buell G, et al. Amiloride-sensitive epithelial Na channel is made of three homologous subunits. Nature 1994; 367: 412–3
  • McDonald F J, Snyder P M, McCray P B, Welsh M J. Cloning, expression, and tissue distribution of a human amiloride-sensitive Na+ channel. Am J Physiol 1994; 266: L728–34
  • Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lung liquid clearance in α-ENaC-deficient mice. Nat Genet 1996; 12: 325–8
  • Benos D J, Fuller C M, Shlyonsky V G, Berdiev B K, Ismailov I I. Amiloride-sensitive Na* channels: insights and outlooks. News Physiol Sci 1997; 12: 55–61
  • Barker P M, Walters D V, Markiewicz M, Strang L B. Development of the lung liquid reabsorptive mechanism in fetal sheep: synergism of triiodothyronine and hydrocortisone. J Physiol 1991; 433: 435–49
  • Wallace M J, Hooper S B, Harding R. Role of the adrenal glands in the maturation of lung liquid secretory mechanisms in fetal sheep. Am J Physiol 1996; 270: R33–40
  • Walters D V, Ramsden C A, Olver R E. Dibutyryl cAMP induces a gestation-dependent absorption of fetal lung liquid. J Appl Physiol 1990; 68: 2054–9
  • Cott G R, Rao A K. Hydrocortisone promotes the maturation of Na+-dependent ion transport across the fetal pulmonary epithelium. Am J Respir Cell Mol Biol 1993; 9: 166–71
  • Bland R D, Boyd C AR. Cation transport in lung epithelial cells derived from fetal, newborn, and adult rabbits. J Appl Physiol 1986; 61: 507–15
  • O'Brodovich H, Staub O, Rossier B C, Geering K, Kraehenbuhl J-P. Ontogeny of al- and pl-isoforms of Na+-K+-ATPase in fetal distal rat lung epithelium. Am J Physiol 1993; 264: CI 137–43
  • Ingbar D H, Weeks C B, Gilmore-Hebert M, et al. Developmental regulation of Na,K-ATPase in rat lung. Am J Physiol 1996; 270: L619–29
  • Ingbar D H, Duvick S, Savick S K, et al. Developmental changes of fetal rat lung Na-K-ATPase after maternal treatment with dexamethasone. Am J Physiol 1997; 272: L665–72
  • O'Brodovich H, Canessa C, Ueda J, Rafii B, Rossier B C, Edelson J. Expression of the epithelial Na+ channel in the developing rat lung. Am J Physiol 1993; 265: C491–6
  • Tchepichev S, Ueda J, Canessa C, Rossier B C, O'Brodovich H. Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol 1995; 269: C805–12
  • Champigny G, Voilley N, Lingueglia E, Friend V, Barbry P, Lazdunski M. Regulation of expression of the lung amiloride-sensitive Na+ channel by steroid hormones. EMBO J 1994; 13: 2177–81
  • Pitkanen O M, Tanswell A K, O'Brodovich H M. Fetal lung cell-derived matrix alters distal lung epithelial ion transport. Am J Physiol 1995; 268: L762–71
  • Acarregui M J, Brown J J, Mallampalli R K. Oxygen modulates surfactant protein mRNA expression and phospholipid production in human fetal lung in vitro. Am J Physiol 1995; 268: L818–25
  • Barker P M, Gatzy J T. Effect of gas composition on liquid secretion by explains of distal lung of fetal rat in submersion culture. Am J Physiol 1993; 265: L512–7
  • Pitkanen O, Tanswell A K, Downey G, O'Brodovich H. Increased PO2 alters the bioelectric properties of fetal lung epithelium. Am J Physiol 1996; 270: L1060–6
  • Adams F H, Yanagisawa M, Kuzela D, Martinek H. The disappearance of fetal lung fluid following birth. J Pediatr 1971; 78: 837–43
  • Bland R D, McMillan D D, Bressack M A, Dong L. Clearance of liquid from lungs of newborn rabbits. Appl Physiol 1980; 49: 171–7
  • Egan E A, Olver R E, Strang L B. Changes in non-electrolyte permeability of alveoli and the absorption of lung liquid at the start of breathing in the lamb. J Physiol 1975; 244: 161–79
  • Jefferies A L, Tai K FY. Sequential changes in pulmonary epithelial permeability after birth in term and preterm rabbits. Biol Neonate 1994; 66: 86–92
  • Jobe A, Jacobs H, Ikegami M, Berry D. Lung protein leaks in ventilated lambs: effect of gestational age. J Appl Physiol 1985; 58: 1246–51
  • Bland R D, Carlton D P, Scheerer R G, Cummings J J, Chapman D L. Lung fluid balance in lambs before and after premature birth. J Clin Invest 1989; 84: 568–76
  • Egan E A, Dillon W P, Zorn S. Fetal lung liquid absorption and alveolar epithelial solute permeability in surfactant deficient, breathing fetal lambs. Pediatr Res 1984; 18: 566–70
  • Matthay M A, Wiener-Kronisch J P. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis 1990; 142: 1250–7
  • Chang S S, Grunder S, Hanukoglu A, et al. Mutations in the subunits of the epithelial sodium channel cause salt wasting with hyperkalemic acidosis, pseudohypoaldosterinism type 1. Nat Genet 1996; 12: 248–53
  • Farman N, Talbot C R, Boucher R, et al. Noncoordinated expression of a-, β-, and γ-subunit mRNAs of epithelial Na+channel along rat respiratory tract. Am J Physiol 1997; 272: C131–41
  • Gowen C V, Lawson E E, Gingras J, Boucher R, Gatzy J T, Knowles M. Electrical potential difference and ion transport across nasal epithelium of term neonates: correlation with mode of delivery, transient tachypnea of the newborn, and respiratory rate. J Pediatr 1988; 113: 121–7
  • O'Brodovich H M, Hannam V. Exogenous surfactant rapidly increases PaO2 in mature rabbits with lungs that contain large amounts of saline. Am Rev Respir Dis 1993; 147: 1087–90
  • Barker P M, Gowen C W, Lawson E E, Knowles M R. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J Pediatr 1997; 130: 373–7
  • Jefferies A L, Coates G, O'Brodovich H. Pulmonary epithelial permeability in hyaline-membrane disease. N Engl J Med 1984; 311: 1075–80
  • Pitkänen O M, Hallman M, Andersson S M. Correlation of free oxygen radical-induced lipid peroxidation with outcome in very low birth weight infants. J Pediatr 1990; 116: 760–4
  • Saugstad O. Oxygen toxicity in the neonatal period. Acta Paediatr Scand 1990; 79: 881–92
  • Gonzalez A, Sosenko I RS, Chandar J, Hummler H, Claure N, Bancalari E. Influence of infection on patent ductus arteriosus and chronic lung disease in premature infants weighing 1000 grams or less. J Pediatr 1996; 128: 470–8
  • Pierce M R, Bancalari E. The role of inflammation in the pathogenesis of bronchopulmonary dysplasia. Pediatr Pulmonol 1995; 19: 371–8
  • Palazzo R M, Wangensteen O D, Niewoehner D E. Time course of functional repair of the alveolar epithelium after hyperoxic injury. J Appl Physiol 1992; 73: 1881–7
  • Sznajder J I, Olivera W G, Ridge K M, Rutschman D H. Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs. Am J Respir Crit Care Med 1995; 151: 1519–25
  • Nici L, Dowin R, Gilmore-Hebert M, Jamieson J D, Ingbar D H. Upregulation of rat lung Na-K-ATPase during hyperoxic injury. Am J Physiol 1991; 261: L307–14
  • Haddad I Y, Pataki G, Hu P, Galliani C, Beckman J S, Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest 1994; 94: 2407–13
  • Yue G, Russell W J, Benos D J, Jackson R M, Olman M A, Matalon S. Increased expression and activity of sodium channels in alveolar type II cells of hyperoxic rats. Proc Natl Acad Sci USA 1995; 92: 8418–22
  • Compeau C G, Rotstein O D, Tohda H, et al. Endotoxin-stimulated alveolar macrophages impair lung epithelial Na+transport by an L-Arg-dependent mechanism. Am J Physiol 1994; 266: C1330–41
  • Hu P, Ischiropoulos H, Beckman J S, Matalon S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am J Physiol 1994; 266: L628–34
  • Price L T, Chen Y, Frank L. Epidermal growth factor increases antioxidant enzyme and surfactant system development during hyperoxia and protects fetal rat lungs in vitro from hyperoxic toxicity. Pediatr Res 1993; 34: 577–85
  • Buch S, Han R NN, Liu J, et al. Basic fibroblast growth factor and growth factor receptor gene expression in 85% O2-exposed rat lung. Am J Physiol 1995; 268: L455–64
  • Borok Z, Hami A, Danto S I, Lubman R L, Kim K-J, Crandall E D. Effects of EGF on alveolar epithelial junctional permeability and active sodium transport. Am J Physiol 1996; 270: L559–65
  • Adamson I YR, Hedgecock C, Bowden D H. Epithelial cell-fibroblast interactions in lung injury and repair. Am J Pathol 1990; 137: 385–92
  • McGowan S E. Extracellular matrix and the regulation of lung development and repair. FASEB J 1992; 6: 2895–904

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.