1,161
Views
377
CrossRef citations to date
0
Altmetric
Original Article

Heat shock proteins as cellular lifeguards

Pages 261-271 | Published online: 08 Jul 2009

References

  • Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experimentia 1962; 18: 571–3
  • Tissieres A, Mitchell H K, Tracy U M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J Mol Biol 1974; 85: 389–98
  • Leppä S, Sistonen L. Heat shock response - pathophysiological implications. Ann Med 1997; 29: 73–8
  • Morimoto R I, Santoro G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cyto-protection. Nat Biotechnol 1998; 16: 833–8
  • Lindquist S, Craig E A. The heat shock proteins. Annu Rev Genet 1988; 22: 631–77
  • Jäättelä M, Wissing D. Emerging role of heat shock proteins in biology and medicine. Ann Med 1992; 24: 249–58
  • Kabakov A E, Gabai V L. Heat Shock Proteins and Cytoprotection: ATP-deprived Mammalian Cells. Molecular Biology Intelligence Unit Series, R.G. Landes Company, Austin, TX 1997
  • Tavaria M, Gabriele T, Kola I, Anderson R L. A hitchhiker's guide to human Hsp70 family. Cell Stress Chaperones 1996; 1: 23–8
  • Kiang J G, Tsokos G C. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 1998; 80: 183–201
  • Beckmann R P, Mizzen L A, Welch W J. Interaction of Hsp70 with newly synthetized proteins: implications for protein folding and assembly. Science 1990; 248: 850–4
  • Shi Y, Thomas J O. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytocolic cognate. Mol Cell Biol 1992; 12: 2186–92
  • Murakami H, Pain D, Blobel G. 70 kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol 1988; 107: 2051–7
  • Chiang H-L, Terlecky S, Plant C P, Dice J F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246: 382–5
  • Nollen E A, Brunsting J F, Roelofsen H, Weber L A, Kampinga H H. In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 1999; 19: 2069–79
  • Jäättelä M, Wissing D, Bauer P A, Li G C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 1992; 11: 3507–12
  • Mosser D D, Caron A W, Bourget L, Denis-Larose C, Massie B. Role of human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997; 17: 5317–27
  • Vayssier M, Banzet N, Francois D, Bellmann K, Polla B S. Tobacco smoke induces both apoptosis and necrosis in mammalian cells: differential effects of HSP70. Am J Physiol 1998; 275: L771–9
  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998; 17: 6124–34
  • Arrigo A P. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 1998; 379: 19–26
  • Oh H J, Chen X, Subjeck J R. Hsp 110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 1997; 272: 31636–40
  • Landry J, Bernier D, Chrétien P, Nicole L M, Tanguay R M, Marceau N. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res 1982; 42: 2457–61
  • Li G C, Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA 1982; 79: 3218–22
  • Riabolow K T, Mizzen L A, Welch W J. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 1988; 242: 433–6
  • Li G C, Li L, Liu Y-K, Mak J Y, Chen L, Lee W MF. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene. Proc Natl Acad Sci USA 1991; 88: 1681–5
  • Angelidis C E, Nova C, Lazaridis I, Kontoyiannis D, Kollias G, Pagoulatos G N. Overexpression of HSP70 in transgenic mice results in increased cell thermotolerance. Transgenics 1996; 2: 111–7
  • Landry J, Chrétien P, Lambert H, Hickey E, Weber L A. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 1989; 109: 7–15
  • Jäättelä M, Saksela K, Saksela E. Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factors α and β. Eur J Immunol 1989; 19: 1413–7
  • Jäättelä M. Effects of heat shock on cytolysis mediated by NK cells, activated monocytes and TNFs α and β. Scand J Immunol 1990; 31: 175–82
  • Maytin E V, Murphy L A, Merrill M A. Hyperthermia induces resistance to ultraviolet light B in primary and immortalized epidermal keratinocytes. Cancer Res 1993; 53: 4952–9
  • Bellmann K, Wenz A, Radons J, Burkart V, Kleemann R, Kolb H. Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J Clin Invest 1995; 95: 2840–5
  • Buzzard K A, Giaccia A J, Killender M, Anderson R L. Heat shock protein 72 modulates pathways of stress-induced apoptosis. J Biol Chem 1998; 273: 17147–53
  • Nishimura H, Emoto M, Kimura K, Yoshikai Y. Hsp70 protects macrophages infected with Salmonella choleraesuis against TNF-alpha-induced cell death. Cell Stress Chaperones 1997; 2: 50–9
  • Kim Y M, de Vera M E, Watkins S C, Billiar T R. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor α-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 1997; 272: 1402–11
  • Liossis S N, Ding X Z, Kiang J G, Tsokos G C. Overexpression of the heat shock protein 70 enhances the TCR/CD3- and Fas/Apo-1/CD95-mediated apoptotic cell death in Jurkat T cells. J Immunol 1997; 158: 5668–75
  • Jäättelä M, Wissing D. Heat shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med 1993; 177: 231–6
  • Wong H R, Mannix R J, Rusnak J M, Boota A, Zar H, Watkins S C, et al. The heat-shock response attenuates lipopolysaccharide-mediated apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 1996; 15: 745–51
  • Xu L, Giffard R G. HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci Lett 1997; 224: 9–12
  • Wagstaff M J, Collaco-Moraes Y, Smith J, de Belleroche J S, Coffin R S, Latchman D S. Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. J Biol Chem 1999; 274: 5061–9
  • Fink S L, Chang L K, Ho D Y, Sapolsky R M. Defective herpes simplex virus vectors expressing the rat brain stress-inducible heat shock protein 72 protect cultured neurons from severe heat shock. J Neurochem 1997; 68: 961–9
  • Bellmann K, Jäättelä M, Wissing D, Burkart V, Kolb H. Heat shock protein Hsp70 overexpression confers resistance against nitric oxide. FEBS Lett 1996; 391: 185–8
  • Urayama S, Musch M W, Retsky J, Madonna M B, Straus D, Chang E B. Dexamethasone protection of rat intestinal epithelial cells against oxidant injury is mediated by induction of heat shock protein 72. J Clin Invest 1998; 102: 1860–5
  • Chong K Y, Lai C C, Lille S, Chang C, Su C Y. Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol 1998; 30: 599–608
  • Beaucamp N, Harding T C, Geddes B J, Williams J, Uney J B. Overexpression of hsp70i facilitates reactivation of intracellular proteins in neurones and protects them from denaturing stress. FEBS Lett 1998; 441: 215–9
  • Wong H R, Menendez I Y, Ryan M A, Denenberg A G, Wispe J R. Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. Am J Physiol 1998; 275: L836–41
  • Mestril R, Chi S H, Sayen M R, O'Reilly K, Dillmann W H. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 1994; 93: 759–67
  • Amin V, Gumming D V, Latchman D S. Over-expression of heat shock protein 70 protects neuronal cells against both thermal and ischaemic stress but with different efficiencies. Neurosci Lett 1996; 206: 45–8
  • Wissing D, Jäättelä M. HSP27 and HSP70 increase the survival of WEHI-S cells exposed to hyperthermia. Int J Hypertherm 1996; 12: 125–38
  • Simon M M, Krone C, Schwarz A, Luger T A, Jäättelä M, Schwarz T. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 1995; 95: 926–33
  • Trautinger F, Kindas-Mugge I, Barlan B, Neuner P, Knobler R M. 72-kD heat shock protein is a mediator of resistance to ultraviolet B light. J Invest Dermatol 1995; 105: 160–2
  • Karlseder J, Wissing D, Holzer G, Orel L, Sliutz G, Auer H, et al. Hsp70 overexpression mediates the escape of a doxorubicin induced G2 cell cycle arrest. Biochem Biophys Res Commun 1996; 220: 153–9
  • Samali A, Cotter T G. Heat shock proteins increase resistance to apoptosis. Exp Cell Res 1996; 223: 163–70
  • Kwak H J, Jun C D, Pae H O, Yoo J C, Choi B M, Na Y G, et al. The role of inducible 70-kDa heat shock protein in cell cycle control, differentation, and apoptotic cell death of the human myeloid leukemic HL-60 cells. Cell Immunol 1998; 187: 1–12
  • Mehlen P, Schulze-Osthoff K, Arrigo A-P. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1 and staurosporine-induced cell death. J Biol Chem 1996; 271: 16510–4
  • Mairesse N, Bernaert D, Del Bino G, Horman S, Mosselmans R, Robaye B, et al. Expression of HSP27 results in increased sensitivity to tumor necrosis factor, etoposide, and H202 in an oxidative stress-resistant cell line. J Cell Physiol 1998; 177: 606–17
  • Richards E H, Hickey E, Weber L, Master J R. Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 1996; 56: 2446–51
  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo A-P, Chauffert B, et al. HSP27 is a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 1997; 57: 2661–7
  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 1997; 158: 4341–50
  • Ashkenazi A, Dixit V M. Death receptors: signaling and modulation. Science 1998; 281: 1305–8
  • Green D R, Reed J C. Mitochondria and apoptosis. Science 1998; 281: 1309–12
  • Evan G, Littlewood T. A matter of life and cell death. Science 1998; 281: 1317–22
  • Thornberry N A, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–6
  • Jäättelä M. Escaping cell death; survival proteins in cancer. Exp Cell Res 1999; 248: 30–43
  • Boldin M P, Goncharov T M, Goltsev Y V, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996; 85: 803–15
  • Muzio M, Chinnaiyan A M, Kischkel F C, O'Rourke K, Shevchenko A, Ni J, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817–27
  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli K J, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–87
  • Li P, Nijhawan D, Budihardjo I, Srinivasula S M, Ahmad M, Alnemeri E S, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates apoptotic protease cascade. Cell 1997; 91: 479–89
  • Zou H, Henzel W J, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–13
  • Fesus L. Biochemical events in naturally occurring forms of cell death. FEBS Lett 1993; 328: 1–5
  • Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3–15
  • Leist M, Single B, Castoldi A F, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185: 1481–6
  • Li G C, Li L, Liu R Y, Rehman M, Lee W MF. Protection from thermal stress by human hsp70 with or without its ATP-binding domain. Proc Natl Acad Sci USA 1992; 89: 2036–40
  • Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 1998; 187: 1477–85
  • Gabai V L, Kabakov A E. Rise in heat-shock protein level confers tolerance to energy deprivation. FEBS Lett 1993; 327: 247–50
  • Polla B S, Kantengwa S, François D, Salvioli S, Franceschi C, Marsac C, et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 1996; 93: 6458–63
  • Mehlen P, Kretz-Remy C, Préville X, Arrigo A-P. Human hsp27, Drosophila hsp27 and human αβ-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. EMBO J 1996; 15: 2695–706
  • Préville X, Salvemini F, Giraud S, Chaufour S, Paul C, Stepien G, et al. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 1999; 247: 61–78
  • Lavoie J N, Gingras-Breton G, Tanguay R M, Landry J. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 1993; 268: 3420–9
  • Kampinga H H, Brunsting J F, Stege G J, Konings A W, Landry J. Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 1994; 204: 1170–7
  • Benjamin I J, McMillan D R. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998; 83: 117–32
  • Marber M S, Latchman D S, Walker J M, Yellon D M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264–72
  • Liu Y, Kato H, Nakata N, Kogure K. Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res 1992; 586: 121–4
  • Gowda A, Yang C J, Asimakis G K, Ruef J, Rastegar S, Runge M S, et al. Cardioprotection by local heating: improved myocardial salvage after ischemia and reperfusion. Ann Thorac Surg 1998; 65: 1241–7
  • Vass K, Welch W J, Nowak T S, Jr. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol (Berl) 1988; 77: 128–35
  • Plumier J C, Krueger A M, Currie R W, Kontoyiannis D, Kollias G, Pagoulatos G N. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 1997; 2: 162–7
  • Plumier J C, Ross B M, Currie R W, Angelidis C E, Kazlaris H, Kollias G, et al. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 1995; 95: 1854–60
  • Marber M S, Mestril R, Chi S H, Sayen M R, Yellon D M, Dillmann W H. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95: 1446–56
  • Radford N B, Fina M, Benjamin I J, Moreadith R W, Graves K H, Zhao P, et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 2339–42
  • Trost S U, Omens J H, Karlon W J, Meyer M, Mestril R, Covell J W, et al. Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 1998; 101: 855–62
  • Hutter J J, Mestril R, Tam E KW, Sievers R E, Dillmann W H, Wolfe C L. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 1996; 94: 1408–11
  • Brar B K, Stephanou A, Wagstaff M JD, Coffin R S, Marber M S, Engelmann G, et al. Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 1999; 31: 135–46
  • Gowda A, Yang C, Asimakis G K, Rastegar S, Motamedi M. Heat shock improves recovery and provides protection against global ischemia after hypothermic storage. Ann Thorac Surg 1998; 66: 1991–7
  • Hiratsuka M, Yano M, Mora B N, Nagahiro I, Cooper J D, Patterson G A. Heat shock pretreatment protects pulmonary isografts from subsequent ischemia-reperfusion injury. J Heart Lung Transplant 1998; 17: 1238–46
  • Tarumi K, Yagihashi A, Tsuruma T, Sakawaki T, Sasaki K S, Hirata K. Heat shock protein improves cold preserved small bowel grafts. Transplant Proc 1998; 30: 3455–8
  • Wang B H, Ye C, Stagg C A, Lin M, Fawcett T, Vander Kolk C A, et al. Improved free musculocutaneous flap survival with induction of heat shock protein. Plast Reconstr Surg 1998; 101: 776–84
  • Baba H A, Schmid K W, Schmid C, Blasius S, Heinecke A, Kerber S, et al. Possible relationship between heat shock protein 70, cardiac hemodynamics, and survival in the early period after heart transplantation. Transplantation 1998; 65: 799–804
  • Flohe S, Speidel N, Flach R, Lange R, Erhard J, Schade F U. Expression of HSP 70 as a potential prognostic marker for acute rejection in human liver transplantation. Transpl Int 1998; 11: 89–94
  • Kindas-Mugge I, Hammerle A H, Frohlich I, Oismuller C, Micksche M, Trautinger F. Granulocytes of critically ill patients spontaneously express the 72 kD heat shock protein. Ore Shock 1993; 39: 247–52
  • Polla B S, Cossarizza A. Stress proteins in inflammation. EXS 1996; 77: 375–91
  • Wong H R. Potential protective role of the heat shock response in sepsis. New Horiz 1998; 6: 194–200
  • Hotchkiss R, Nunnally I, Lindquist S, Taulien J, Perdrizet G, Karl I. Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol 1993; 265: R1447–57
  • Ribeiro S P, Villar J, Downey G P, Edelson J D, Slutsky A S. Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rats against sepsis. Crit Care Med 1994; 22: 922–9
  • Villar J, Ribeiro S P, Mullen J B, Kuliszewski M, Post M, Slutsky A S. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 1994; 22: 914–21
  • Ribeiro S P, Villar J, Downey G P, Edelson J D, Slutsky A S. Effects of the stress response in septic rats and LPS-stimulated alveolar macrophages: evidence for TNF-alpha posttranslational regulation. Am J Respir Crit Care Med 1996; 154: 1843–50
  • Klosterhalfen B, Hauptmann S, Tietze L, Tons C, Winkeltau G, Kupper W, et al. The influence of heat shock protein 70 induction on hemodynamic variables in a porcine model of recurrent endotoxemia. Shock 1997; 7: 358–63
  • Hearse D J. Myocardial protection during ischemia and reperfusion. Mol Cell Biochem 1998; 186: 177–84
  • Hutter J J, Mestril R, Tam E K, Sievers R E, Dillmann W H, Wolfe C L. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 1996; 94: 1408–11
  • van der Vusse G J, Cornelussen R N, Roemen T H, Snoeckx L H. Heat stress pretreatment mitigates postischemic arachidonic acid accumulation in rat heart. Mol Cell Biochem 1998; 185: 205–11
  • Tons C, Klosterhalfen B, Klein H M, Rau H M, Anurov M, Oettinger A, et al. Induction of heat shock protein 70 (HSP70) by zinc bis (DL-hydrogen aspartate) reduces ischemic small-bowel tissue damage in rats. Langenbecks Arch Chir 1997; 382: 43–8
  • Hauser G J, Dayao E K, Wasserloos K, Pitt B R, Wong H R. HSP induction inhibits iNOS mRNA expression and attenuates hypotension in endotoxin-challenged rats. Am J Physiol 1996; 271: H2529–35
  • Trautinger F, Knobler R M, Honigsmann H, Mayr W, Kindas-Mugge I. Increased expression of the 72-kDa heat shock protein and reduced sunburn cell formation in human skin after local hyperthermia. J Invest Dermatol 1996; 107: 442–3
  • Feder J H, Rossi J M, Solomon J, Solomon N, Lindquist S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev 1992; 6: 1402–13
  • Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–6
  • Reed J C. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 1999; 11: 68–75
  • Jäättelä M. Overexpression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 1995; 60: 689–93
  • Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo A P, et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 1998; 58: 5495–9
  • Seo J S, Park Y M, Kim J I, Shim E H, Kim C W, Jang J J, et al. T cell lymphoma in transgenic mice expressing the human hsp70 gene. Biochem Biophys Res Commun 1996; 218: 582–7
  • Ciocca D R, Clark G M, Tandon A K, Fuqua S A, Welch W J, McGuire W L. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 1993; 85: 570–4
  • Vargas-Roig L M, Fanelli M A, Lopez L A, Gago F E, Tello O, Aznar J C, et al. Heat shock proteins and cell proliferation in human breast cancer biopsy samples. Cancer Detect Prev 1997; 21: 441–51
  • Lazaris A C, Chatzigianni E B, Panoussopoulos D, Tzimas G N, Davaris P S, Golematis B C. Proliferating cell nuclear antigen and heat shock protein 70 immunolocalization in invasive ductal breast cancer not otherwise specified. Breast Cancer Res Treat 1997; 43: 43–51
  • Vargas-Roig L M, Gago F E, Tello O, Aznar J C, Ciocca D R. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 1998; 73: 468–75
  • Liu F F, Miller N, Levin W, Zanke B, Cooper B, Henry M, et al. The potential role of HSP70 as an indicator of response to radiation and hyperthermia treatments for recurrent breast cancer. Int J Hyperthermia 1996; 12: 197–208, discussion 209–10
  • Ciocca D R, Green S, Elledge R M, Clark G M, Pugh R, Ravdin P, et al. Heat shock proteins hsp27 and hsp70: lack of correlation with response to tamoxifen and clinical course of disease in estrogen receptor-positive metastatic breast cancer (a Southwest Oncology Group Study). Clin Cancer Res 1998; 4: 1263–6
  • Nanbu K, Konishi I, Mandai M, Kuroda H, Hamid A A, Komatsu T, et al. Prognostic significance of heat shock proteins HSP70 and HSP90 in endometrial carcinomas. Cancer Detect Prev 1998; 22: 549–55
  • Santarosa M, Favaro D, Quaia M, Galligioni E. Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 1997; 33: 873–7
  • Trieb K, Lechleitner T, Lang S, Windhager R, Kotz R, Dirnhofer S. Heat shock protein 72 expression in osteosarcomas correlates with good response to neoadjuvant chemotherapy. Hum Pathol 1998; 29: 1050–5
  • Ciocca D R, Oesterreich S, Chamness G C, McGuire W L, Fuqua S A. Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 1993; 85: 1558–70
  • Ciocca D R, Luque E H. Immunological evidence for the identity between the hsp27 estrogen-regulated heat shock protein and the p29 estrogen receptor-associated protein in breast and endometrial cancer. Breast Cancer Res Treat 1991; 20: 33–42
  • Hurlimann J, Gebhard S, Gomez F. Oestrogen receptor, progesterone receptor, pS2, ERD5, HSP27 and cathepsin D in invasive ductal breast carcinomas. Histopathology 1993; 23: 239–48
  • Oesterreich S, Hilsenbeck S G, Ciocca D R, Allred D C, Clark G M, Chamness G C, et al. The small heat shock protein HSP27 is not an independent prognostic marker in axillary lymph node-negative breast cancer patients. Clin Cancer Res 1996; 2: 1199–206
  • Love S, King R J. A 27 kDa heat shock protein that has anomalous prognostic powers in early and advanced breast cancer. Br J Cancer 1994; 69: 743–8
  • Geisler J P, Geisler H E, Tammela J, Miller G A, Wiemann M C, Zhou Z. A Study of Heat Shock Protein 27 in Endometrial Carcinoma. Gynecol Oncol 1999; 72: 347–50
  • Langdon S P, Rabiasz G J, Hirst G L, King R J, Hawkins R A, Smyth J F, et al. Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1995; 1: 1603–9
  • Uozaki H, Horiuchi H, Ishida T, Iijima T, Imamura T, Machinami R. Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase pi, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Relationship with poor prognosis. Cancer 1997; 79: 2336–44
  • Wei Y, Zhao X, Kariya Y, Teshigawara K, Uchida A. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) expression in tumor cells. Cancer Immunol Immunother 1995; 40: 73–8
  • Mairesse N, Horman S, Mosselmans R, Galand P. Antisense inhibition of the 27 kDa heat shock protein production affects growth rate and cytoskeletal organization in MCF-7 cells. Cell Biol Int 1996; 20: 205–12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.