91
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Drug development for neurodegenerative diseases: role of PET

Pages 444-449 | Published online: 08 Jul 2009

References

  • Braak H, Break E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–59
  • Braak H, Braak E. On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina specific pathology in Alzheimer's disease. Acta Neuropathol 1985; 68: 325–32
  • Rapoport SI. Positron emission tomography in Alzheimer's disease in relation to disease pathogenesis: a critical review. Cerebrovasc Brain Metab Rev 1991; 3: 297–335
  • Ferris SH, De Leon MJ, Wolf AP. Positron emission tomography in the study of aging and senile dementia. Neurobiol Aging 1980; 1: 127–31
  • Frackowiak RSJ, Pozilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL. Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with O-15 and positron tomography. Brain 1981; 104: 753–78
  • DeLeon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II. Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer's disease. J Cereb Blood Flow Metab 1983; 3: 391–4
  • Wang GJ, Volkow ND, Wolf AP, Brodie JD, Hitzemann RJ. Intersubject variability of brain glucose metabolic measurements in young normal males. J Nucl Med 1994; 35: 1457–66
  • Bartlett EJ, Brodie JD, Wolf AP, Christman DR, Laska E, Meissner M. Reproducibility of cerebral glucose metabolic measurements in resting human subjects. J Cereb Blood Flow Metab 1988; 8: 502–12
  • Mann JJ, Malone KM, Diehl DJ, Perel J, Nichols TE, Mintum MA. Positron emission tomographic imaging of serotonin activation effects on prefrontal cortex in healthy volunteers. J Cereb Blood Flow Metab 1996; 16: 418–26
  • Kiyosawa M, Baron JC, Hamel E, Pappata S, Duverger D, Riche D. Time course of effects of unilateral lesions of the nucleus basalis of Meynert on glucose utilisation by the cerebral cortex. Positron tomography in baboons. Brain 1989; 112: 435–55
  • Nishiyama K, Momose T, Sugishita M, Sakuta M. Positron emission tomography of reversible intellectual impairment induced by long-term anticholinergic therapy. J Neurol Sci 1995; 132: 89–92
  • Cohen RM, Gross M, Semple WE, Nordahl TE, Sunderland T. The metabolic pattern of young subjects given scopolamine. Exp Brain Res 1994; 100: 133–43
  • Blin J, Piercey M, Giuffa ME, Mouradian MM, Chase TN. Metabolic effects of scopolamine and physostigmine in human brain measured by positron emission tomography. J Neurol Sci 1994; 123: 44–51
  • Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M. Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualised by positron emission tomography. Neurobiol Aging 1992; 13: 747–58
  • Fontaine S, Nordberg A. Brain imaging. Clinical Diagnosis and Management of Alzheimer's Disease, S Gauthier. Martin Dunitz, London 1996; 83–105
  • Nordberg A. Effect of long-term treatment with tacrine (THA) in Alzheimer's disease as visualised by PET. Acta Neurol Scand 1993; 62–5, Suppl 149
  • Heiss WD, Heboid I, Klinkhammer P, Ziffling P, Szelies P, Pawlik G. Effect of piracetam on cerebral glucose metabolism in Alzheimer's disease as measured by positron emission tomography. J Cereb Blood Flow Metab 1988; 8: 613–7
  • Klinkhammer P, Szelies B, Heiss WD. Effect of phosphatidylserine on cerebral glucose metabolism in Alzheimer's disease. Dementia 1990; 1: 197–201
  • Tune L, Brandt J, Frost JJ, Harris G, Mayberg H, Steele C. Physostigmine in Alzheimer's disease: effects on cognitive functioning, cerebral glucose metabolism analysed by positron emission tomography and cerebral blood flow analysed by single photon emission tomography. Acta Psychiatr Scand 1991; 61–5, Suppl 366
  • Tun LE, Tiseo PJ, Hoffman JM, Perdomo CA, Votow JR, Rogers SL. Donepezil HCl maintains functional brain activity in patients with Alzheimer's disease: results of a 24 week study (abstract). Neurology 1998; 50: 250, Suppl 4
  • Farde L. The advantage of using positron emission tomography in drug research. Trends Neurosci 1996; 19: 211–4
  • Bodick NC, Often WW, Levey AI, Cutler NR, Gautheir SG, Satlin A. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioural symptoms in Alzheimer's disease. Arch Neurol 1997; 54: 465–73
  • Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H. Decreased uptake of 11C-nicotine in brain of Alzheimer patients as visualised by positron emission tomography. J Neural Transm Park Dis Dement Sect 1990; 2: 215–24
  • Olson L, Nordberg A, von Holst H, Backman L, Ebendahl T, Alzfuzoff I. Nerve growth factor affects nicotine binding, blood flow, EEG and verbal episodic memory in an Alzheimer patient. J Neural Transm Park Dis Dement Sect 1992; 4: 79–95
  • Frey KA, Koeppe RA, Mulhooland GK, Kuhl DE. Quantification of regional cerebral muscarinic receptors with the use of [C-11]tropanyl benzilate and positron emission tomography. J Nucl Med 1990; 31: 779
  • Frey KA, Koeppe RA, Mulhooland GK, Jewett D, Hichwas R, Ehrenkaufer RLE. In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab 1992; 12: 147–54
  • Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T. Measurement of acetylcholinesterase by positron emission tomography in brains of healthy controls and patients with Alzheimer's disease. Lancet 1997; 349: 1805–9
  • Namba H, Iyo M, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T. Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med 1999; 26: 135–43
  • Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL. In vivo mapping of cerebral acetylcholinesterase activity in aging and AD. Neurology 1999; 52: 691–9
  • Bernheimer H, Birkmeyer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 1973; 20: 415–45
  • Rinne JO, Rummukainen J, Paljärvi L, Rinne UK. Dementia in Parkinson's disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 1989; 26: 47–50
  • Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991; 114: 2283–301
  • Paulus W, Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson's disease. J Neuropathol Exp Neurol 1991; 50: 743–55
  • Miletich RS, Chan T, Gillespie M, Di Chiro C, Susin S. Contralateral basal ganglia metabolism is abnormal in hemiparkinsonian patients. An FDG PET study. Neurology 1988; 38: 260
  • Wolfson LI, Leenders KL, Brown LL, Jones T. Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson's disease. Neurology 1985; 35: 1399–405
  • Eidelberg D, Moeller JR, Bhawan V, Spetsieris P, Takikawa S, Ishikawa T. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994; 14: 783–801
  • Garnett ES, Nahmias C, Firnau G. Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can J Neurol Sci 1984; 11: 174–9
  • Leenders KL, Palmer AJ, Quinn N, Clarck JC, Firnau G, Garnett ES. Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 1986; 49: 853–60
  • Brooks DJ, Ibanez V, Sawle GV, Quinn N, Lees AJ, Mathia CJ. Differing patterns of striatal [18F]fluorodopa uptake in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Ann Neurol 1990; 28: 547–55
  • Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F]dopa PET findings in early Parkinson's disease. J Neurol Neurosurg Psychiatry 1995; 59: 597–600
  • Nurmi EM, Ruottinen HM, Bergman J, Haaparanta M, Solin O, Rinne JO. The rate of progression in Parkinson's disease: a [18F]dopa study. Neurology 1999; 52: 91, Suppl 2
  • Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann Neurol 1993; 43: 423–31
  • Rinne JO, Laihinen A, Någren K, Ruottinen H, Ruotsalainen U, Rinne UK. PET examination of the monoamine transporter with [11C]β-CIT and [11C]β-CFT in early Parkinson's disease. Synapse 1995; 21: 97–103
  • Rinne JO, Bergman J, Ruottinen H, Haaparanta M, Eronen E, Sonninen P. Striatal uptake of a novel dopamine transporter PET ligand, [18F]β-CFT, is reduced in early Parkinson's disease. Synapse 1999; 31: 119–24
  • Gunman M, Burkholder J, Kish SJ, Hussey D, Wilson A, DaSilva J. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson's disease: implications for the symptomatic threshold. Neurology 1997; 48: 1578–83
  • Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O. A dopamine transporter PET ligand, [18F]CFT, in assessing disability in Parkinson's disease. J Neurol Neurosurg Psychiatry, (in press)
  • Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ. Striatal dopamine D2 receptor status in Parkinson's disease, striatonigral degeneration and progressive supranuclear palsy, measured with [11C]raclopride and PET. Ann Neurol 1992; 31: 184–192
  • Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Någren K, Lehikoinen P. Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11C]raclopride. J Neurol Sci 1995; 132: 156–61
  • Kaasinen V, Ruottinen HM, Någren K, Lehikoinen P, Oikonen V, Rinne JO. Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C]raclopride and [11C]N-methylspiperone. J Nucl Med, (in press)
  • Rinne JO, Laihinen A, Någren K, Bergman J, Solin O, Haaparanta M. PET demonstrates different behaviour of striatal dopamine D1 and D2 receptors in early Parkinson's disease. J Neurosci Res 1990; 27: 494–9
  • Shinotoh H, Inoue O, Hirayama K, Aotsuka A, Asahina M, Suhara T. Dopamine D1 receptors in Parkinson's disease and striatonigral degeneration: a positron emission tomography study. J Neurol Neurosurg Psychiatry 1993; 56: 467–72
  • Turjanski N, Lees AJ, Brooks DJ. PET studies on striatal dopaminergic receptor binding in drug naive and 1-dopa treated Parkinson's disease patients with and without dyskinesia. Neurology 1997; 49: 717–23
  • Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RSJ, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson's disease: a PET study. Ann Neurol 1992; 32: 151–61
  • Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RSJ, Passingham RE. Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann Neurol 1992; 32: 749–57
  • Antonini A, Schwarz J, Oertel WH, Beer HF, Madeja UD, Leenders KL. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson's disease: influence of 1-dopa and lisuride therapy on striatal dopamine D2 receptors. Neurology 1994; 44: 1325–9
  • Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J. A PET study of [11C]FLB 457 binding to extrastriatal dopamine D2 receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology 1997; 133: 396–404
  • Roberts JW, Cora-Locatelli G, Bravi D, Amantea MA, Mouradian MM, Chase TN. Catechol-O-methyltransferase inhibitor tolcapone prolongs levodopa/carbidopa action in parkinsonian patients. Neurology 1994; 44: 2685–8
  • Ruottinen HM, Rinne UK. Entacapone prolongs levodopa response in a one month double blind study in parkinsonian patients with levodopa related fluctuations. J Neurol Neurosurg Psychiatry 1996; 60: 36–40
  • Sawle GV, Burn DJ, Morrish PK, Lammerstma AA, Snow BJ, Luthra S. The effects of entacapone (OR-611) on brain [18F]-6-fluorodopa metabolism: implications for levodopa therapy of Parkinson's disease. Neurology 1994; 44: 1292–7
  • Ruottinen HM, Rinne JO, Ruotsalainen U, Bergman J, Oikonen V, Haaparanta M. Striatal [18F]fluorodopa utilisation after COMT inhibition with entacapone studied with PET in advanced Parkinson's disease. J Neural Transm Park Dis Dement Sect 1995; 10: 91–106
  • Ruottinen HM, Rinne JO, Oikonen VJ, Bergman J, Haaparanta M, Solin O. Striatal 6-[18F]fluorodopa accumulation after combined inhibition of peripheral catechol-O-methyltransferase and monoamino-oxidase type B: differing response in relation to presynaptic dopaminergic dysfunction. Synapse 1997; 27: 336–46
  • Ceravolo R, Piccini P, Bailey D, Jorga K, Brooks DJ. [18F]dopa PET evidence for a central effect of tolcapone on COMT in Parkinson's disease. Parkinsonism Related Disord 1999; 5: 57
  • Pate BD, Kawamata T, Yamada T, McGeer EG, Hewitt KA, Snow BJ. Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann Neurol 1993; 34: 331–8
  • Snow BJ, Tooyama I, McGeer EG, Yamada T, Calne DB, Takahashi H. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 1993; 34: 324–30
  • Blin J, Mazetti P, Mazoyer B, Rivaud S, Ben-Ayed S, Mavpani C. Does the enhancement of cholinergic neurotransmission influence brain glucose kinetics and clinical symptomatology in progressive supranuclear palsy. Brain 1995; 118: 1485–95
  • DeVolder A, Sindic CJM, Goffinet AM. Effect of D-penicillamine treatment on brain metabolism in Wilson's disease: a case study. J Neurol Neurosurg Psychiatry 1988; 51: 947–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.