311
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Review Article: Genomic imprinting: concept and clinical consequences

&
Pages 4-11 | Published online: 08 Jul 2009

References

  • Savory T H. The mule. Scientific American 1970; 223: 102–9
  • McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37: 179–83
  • Surani M A, Kothary R, Allen N D, Singh P B, Fundele R, Ferguson-Smith A C, et al. Genome imprinting and development in the mouse. 1990; 89–98, Dev Suppl
  • Cattanach B M, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985; 315: 496–8
  • DeChiara T M, Robertson E J, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64: 849–59
  • Barlow D P, Stoger R, Herrmann B G, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 1991; 349: 84–7
  • Morison I M, Reeve A E. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet 1998; 7: 1599–609
  • Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7: 45–9
  • Vrana P B, Guan X J, Ingram I, Tilghman S M. Genomic imprinting is disrupted in interspecific peromyscues hybrids. Nut Genet 1998; 20: 362–5
  • Constancia M, Piekard B, Kelsey G, Reik W. Imprinting mechanisms. Genome Res 1998; 8: 881–900
  • Razin A, Cedar H. DNA methylation and genomic imprinting. Cell 1994; 77: 473–6
  • Bestor T H. Cloning of a mammalian DNA methyl-transferase. Gene 1988; 74: 9–12
  • Li E, Beard C, Jaeniseh R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362–5
  • Szabo P E, Mann, JR. Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev 1995; 9: 1857–68
  • Brandeis M, Kafri T, Arid M, Chaillet J R, MeCarrey J, Razin A, et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 1993; 12: 3669–77
  • Kimura Y, Yanagimachi R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 1995; 121: 2397–405
  • Tremblay K D, Duran K L, Bartolomei M S. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Bid 1997; 17: 4322–9
  • Tremblay K D, Saam J R, Ingram R S, Tilghman S M, Bartolomei M S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 1995; 9: 407–13
  • Stoger R, Kubicka P, Liu C G, Kafri T, Razin A, Cedar H, et al. Maternal-specific methylation of the imprinted mouse lgf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 1993; 73: 61–71
  • Ariel M, Robinson E, McCarrey J R, Cedar H. Gamete-specific methylation correlates with imprinting of the murine Xist gene. Nut Genet, 199(59)312–5
  • Shibata H, Ueda T, Kamiya M, Yoshiki A, Kusakabe M, Plass C, et al. An oocyte-specific methylation imprint center in the mouse u2afbp-rs/u2afl-rsl gene marks the establishment of allele-specific methylation during preimplantation development. Genomics 1997; 44: 171–8
  • Koide T, Ainscough J, Wijgerde M, Surani M A. Comparative analysis of Igf-2/H19 imprinted domain: identification of a highly conserved intergenic DNase I hypersensitive region. Genomics 1994; 24: 1–8
  • Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll D J, et al. Allele-specific replication timing of imprinted gene regions. Nature 1993; 364: 459–63
  • Pettenati M J, Haines J L, Higgins R R, Wappner R S, Palmer C G, Weaver D D. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet 1986; 74: 143–54
  • Elliott M, Bayly R, Cole T, Temple I K, Maher E R. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 1994; 46: 168–74
  • Chitayat D, Rothchild A, Ling E, Friedman J M, Couch R M, Yong S L, et al. Apparent postnatal onset of some manifestations of the Wiedemann-Beckwith syndrome. Am J Med Genet 1990; 36: 434–9
  • Wiedemann H R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur J Pediatr 1983; 141: 129
  • Mannens M, Hoovers J M, Redeker E, Verjaal M, Feinberg A P, Little P, et al. Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith-Wiedemann syndrome and various human neoplasia. Eur J Hum Genet 1994; 2: 3–23
  • Hoovers J M, Kalikin L M, Johnson L A, Alders M, Redeker B, Law D J, et al. Multiple genetic loci within 11p15 defined by Beckwith-Wiedemann syndrome rearrangement breakpoints and subchromosomal transferable fragments. Proc Natl Acad Sci USA 1995; 92: 12456–60
  • Mannens M, Alders M, Redeker B, Bliek J, Steenman M, Wiesmeyer G, et al. Positional cloning of genes involved in the Beckwith-Wiedemann syndrome, hemihypertrophy, and associated childhood tumors. Med Pediatr Oncol 1996; 27
  • Leighton P A, Ingram R S, Eggenschwiler J, Efstratiadis A, Tilghman S M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 1995; 375: 34–9
  • Ripoche M A, Kress C, Poirier F, Dandolo L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 1997; 11: 1596–604
  • Catchpoole D, Lam W WK, Valler D, Temple I K, Joyce J A, Reik W, et al. Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome. J Med Genet 1997; 34: 353–9
  • Reik W, Brown K W, Slatter R E, Sartori P, Elliott M, Maher E R. Allelic methylation of H19 and IGF2 in the Beckwith-Wiedemann syndrome. Hum Mol Genet 1994; 3: 1297–301
  • Hatada I, Nabetani A, Morisaki H, Xin Z, Ohishi S, Tonoki H, et al. New P57KIP2 mutations in Beckwith-Wiedemann syndrome. Hum Genet 1997; 100: 681–3
  • O'Keefe D, Dao D, Zhao L, Sanderson R, Warburton D, Weiss L, et al. Coding mutations in P57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet 1997; 61: 295–303
  • Lee M P, Debaun M, Randhawa G, Reiehard B A, Elledge S J, Feinberg A P. Low frequency of PS7KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet 1997; 61: 304–9
  • Okamoto K, Morison I M, Reeve A E, Tommerup N, Wiedemann H R, Friedrich U, et al. Is P57(KIP2) mutation a common mechanism for Beckwith-Wiedemann syndrome or somatic overgrowth?. J Med Genet 1998; 35: 86
  • Lee M P, Hu R J, Johnson L A, Feinberg A P. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nut Genet 1997; 15: 181–5
  • Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardio-auditory syndrome. Nut Genet 1997; 15: 186–9
  • Wang Q, Curran M E, Splawski I, Bum T C, Millholland J M, Van Raay T J, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nut Genet 1996; 12: 17–23
  • Alders M, Hodges M, Hadjantonakis A K, Postmus J, van Wijk I, Bliek J, et al. The human Achaete-Scute homologue 2 (ASCL2, HASHZ) maps to chromosome 11p15.5, close to IGF2 and is expressed in extravillus trophoblasts. Hum Mol Genet 1997; 6: 859–67
  • Henry I, Puech A, Riesewijk A, Ahnine L, Mannens M, Beldjord C, et al. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilization event. Eur J Hum Genet 1993; 1: 19–29
  • Kubota T, Sutcliffe J S, Aradhya S, Gillesen-Kaesbach G, Christian S L, Horsthemke B, et al. Validation studies of SNRPN methylation as a diagnostic test for Prader-Willi syndrome. Am J Med Genet 1996; 66: 77–80
  • Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of Angelman and Prader-Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet 1997; 5: 94–8
  • Sutcliffe J S, Nakao M, Christian S L, Orstarik K H, Tommerup N, Ledbetter D H, et al. Deletions of a differentially rnethylated CpG island at the SNRPN gene define a putative imprinting control region. Nut Genet 1994; 8: 52–8
  • Nicholls R D. Genomic imprinting and candidate genes in the Prader-Willi and Angelman syndromes. Curr Genet Dev 1993; 3: 445–56
  • Wagstaff J, Knoll J H, Glatt K H, Shugart Y Y, Sommer A, Lalande M. Maternal but not paternal transmission of 15q11–13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nut Genet 1992; 1: 291–4
  • Albrecht U, Sutcliffe J S, Cattanach B M, Beechey C V, Armstrong D, Eichele G, et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nut Genet 1997; 17: 75–8
  • Kotzot D, Schmitt S, Bernasconi F, Robinson W P, Lurk I W, Ilyina H, et al. Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation. Hum Mol Genet 1995; 4: 711–9
  • Kobayashi S, Kohda T, Myoshi N, Kuroiwa Y, Aisaka K, Tsutsumi O, et al. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum Mol Genet 1997; 5: 781–6
  • Riesewijk A M, Blagitko N, Schinzel A A, Hu L, Schulz U, Hamel B C, et al. Evidence against a major role for PEGU MEST in Silver-Russell syndrome. Eur J Hum Genet 1998; 6: 114–20
  • Miyoshi N, Kuroiwa Y, Kohda T, Shitara H, Yonekawa H, Kawabe T, et al. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci USA 1998; 95: 1102–7
  • McCauley E, Ito J, Kay T. Psychosocial functioning in girls with the Turner syndrome and short stature. J Am Acad Child Psychiatry 1986; 25: 105–12
  • Skuse D H, James R S, Bishop C P, Coppin B, Dalton P, Aamodt-Leeper G, et al. Evidence from Turners syndrome of an imprinted X linked locus affecting cognitive function. Nature 1997; 387: 705–8
  • Junien C. Beckwith-Wiedemann syndrome, tumorigenesis, and imprinting. Curr Opin Gen Dev 1992; 2: 431–8
  • Caron H, van Sluis P, van Hoeve M, de Kraker J, Bras J, Slater R, et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nut Genet 1993; 4: 187–90
  • Cheng J M, Hiemstra J L, Schneider S S, Naumova A, Cheung N K, Cohn S L, et al. Preferential amplification of the paternal allele of the N-myc gene in human neuroblastoma. Nature 1993; 4: 1914
  • van der Mey A G, Maaswinkel-Mooy P D, Cornelisse C J, Schmidt P H, van de Kamp J J. Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 1989; 2: 1291–4
  • Glassman M L, de Groot N, Hochberg A. Relaxation of imprinting in carcinogenesis. Cancer Genet Cytogenet 1996; 89: 69–73
  • Rachmilewitz J, Elkin M, Looijenga L H, Verkerk A J, Gonik B, Lustig O, et al. Characterization of the imprinted IPW gene: alleleic expression in normal and tumorigenic human tissues. Oncogene 1996; 13: 1687–92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.