Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 39, 2010 - Issue 4-5
147
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Induction of Cell-Mediated Immune Responses to Peptide Antigens of P. vivax in Microparticles Using Intranasal Immunization

, , , , , & show all
Pages 483-499 | Published online: 07 May 2010

REFERENCES

  • Arakawa, T., Tsuboi, T., Kishimoto, A., Sattabongkot, J., Suwanabun, N., Rungruang, T., Matsumoto, Y., Tsuji, N., Hisaeda, H., Stowers, A., Shimabukuro, I., Sato, Y., Torii, M. Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. Vaccine 2003;21:3143–3148.
  • Bargieri, D. Y., Rosa, D. S., Lasaro, M. A., Ferreira, L. C., Soares, I. S., Rodrigues, M. M. Adjuvant requirement for successful immunization with recombinant derivatives of Plasmodium vivax merozoite surface protein-1 delivered via the intranasal route. Mem Inst Oswaldo Cruz 2007;102:313–3177.
  • Bargieri, D. Y., Rosa, D. S., Lasaro, M. A., Ferreira, L. C., Soares, I. S., Rodrigues, M. M. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin. Vaccine 2008;26:6132–6142.
  • Barman, S. P., Lunsford, L., Chambers, P., Hedley, M. L. Two methods for quantifying DNA extracted from poly (lactide-co-glycolide) microspheres. J. Control Rel. 2000;69:337–344.
  • Bendigs, S., Salzer, U., Lipford, G. B., Wagner, H., Heeg, K. CpG-oligodeoxynucleotides co-stimulate primary T cells in the absence of antigen-presenting cells. Eur J Immunol 1999;29:1209–1218.
  • Bhat, A. A., Seth, R. K., Babu, J. P., Biswas, S., Rao, D. N. Induction of mucosal and systemic humoral immune responses in murine system by intranasal immunization with peptide antigens of P.vivax and CpG-Oligodeoxynucleotide (ODN) in microparticle delivery. Int. Immunopharmacol 2009;9:1197–1208.
  • Birkett, A., Lyons, K., Schmidt, A., Boyd, D., Oliveira, G. A., Siddique, A., Nussenzweig, R., Calvo-Calle, J. M., Nardin, E. A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect. Immun. 2002;70:6860–6870.
  • Bralolot-Millan, C. L., Weeratna, R., Kreig, A. M., Siegrist, C. A., Davis, H. L. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci USA 1998;95:1555–1558.
  • Carcaboso, A. M., Hernandez, R. M., Igartua, M., Rosas, J. E., Patarroyo, M. E., Pedraz, J. L. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004;22:1423–1432.
  • Del Portillo, H., Longacre, S., Khouri, E., David, P. H. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc. Natl. Acad. Sci. USA 1991; 88:4030–4034.
  • Doolan, D. L., Hoffman, S. L. IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model. J. Immunol. 1996;163:884–892.
  • Flueck, C., Frank, G., Smith, T., Jafarshad, A., Nebie, I., Sirima, SB., Olugbile, S., Alonso, P., Tanner, M., Druilhe, P., Felger, I., Corradin, G. Evaluation of two long synthetic merozoite surface protein 2 peptides as malaria vaccine candidates. Vaccine 2009;27(20):2653–2661.
  • Haneberg, B., Holst, J. Can nonliving nasal vaccines be made to work? Expert Rev. Vaccines 2002;1:227–232.
  • Hirunpetcharat, C., Stanisic, D., Liu, X. Q., Vadolas, J., Strugnell, R. A., Lee, R., Miller, L. H., Kaslow, D. C., Good, M. F. Intranasal immunization with yeast‐expressed 19 kD carboxyl-terminal fragment of Plasmodium yoelii merozoite surface protein-1 (yMSP1 19) induces protective immunity to blood stage malaria infection in mice. Parasite Immunol. 1998;20:413–420.
  • Imwong, M., Pukrittakayamee, S., Looareesuwan, S., Pasvol, G., Poirreiz, J., White, N. J., Snounou, G. Association of genetic mutations in Plasmodium vivax dhfr with resistance to sulfadoxine-pyrimethamine: geographical and clinical correlates. Antimicrob. Agents Chemother. 2001;45:3122–3127.
  • Jeffery, H., Davis, S. S., O’Hagan, D. T. The preparation and characterization of poly (lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm. Res. 1993;10:362–368.
  • Klinman, D. M., Currie, D., Gursel, I., Verthelyi, D. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev 2004, 199: 201–216.
  • Klinmann, D., Yi, A. K., Beaucage, S. L., Conovor, J., Kreig, A. M. CpG mlotifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and IFN-γ. Proc. Natl. Acad. Sci. USA 1996;93:2879–2883.
  • Kumaratilake, L. M., Ferrante, A. IL-4 inhibits macrophage-mediated killing of Plasmodium falciparum in vitro. A possible parasite-immune evasion mechanism. J. Immunol. 1992;149:194–199.
  • Langhorne, J. The role of CD4+ T-cells in the immune response to Plasmodium chabaudi. Parasitol. Today 1989;5:362–364.
  • Lipford, G. B., Bauer, M., Blank, C., Reiter, R., Wagner, H., Heeg, K. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur. J. Immunol. 1997;27:2340–2344.
  • Lyscom, N., Richter, M. The cells involved in cell-mediated and transplantation immunity in the normal outbred rabbit. XIII. The identity of the responder cells and the role of phagocytic cells in the mixed leucocyte culture reaction. Immunology 1979;37(4):743–751.
  • Manocha, M., Pal, P. C., Chitralekha, K. T., Thomas, B. E., Tripathi, V., Gupta, S. D., Paranjape, R., Kulkarni, S., Rao, D. N. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as cell target. Vaccine 2005;23:5599–5617.
  • Mendis, K., Sina, B. J., Marchesini, P., Carter, R. The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 2001;64:97–106.
  • Mosmann, T. R., Coffman, R. L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 1989;46:111–147.
  • Nardin, E. H., Oliveira, G. A., Calvo-Calle, J. M., Castro, Z. R., Nussenzweig, R. S., Schmeckpeper, B., Hall, B. F., Diggs, C., Bodison, S., Edelman, R. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J. Infect. Dis. 2000;182:1486–1496.
  • Newman, K. D., Elamanchili, P., Kwon, G. S., Samuel, J. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J. Biomed. Mater. Res. 200260:480–486.
  • Newman, K. D., Sosnowski, D. L., Kwon, G. S., Samuel, J. Delivery of MUC1 mucin peptide by Poly(d,l-lactic-co-glycolic acid) microspheres induces type 1 T helper immune responses. J. Pharm. Sci. 1998;87:1421–1427.
  • Rajesh, V., Elamaran, M., Vidya, M., Gowrishankar, Kochar, D., Das, A. Plasmodium vivax: genetic diversity of the apical membrane antigen-1 (AMA-1) in isolates from India. Exp. Parasitol 2007;116: 252–256.
  • Romero, J. F., Ciabattini, A., Guillaume, P., Frank, G., Ruggiero, P., Pettini, E., Del Giudice, G., Medaglini, D., Corradin, G. Intranasal administration of the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei with the modified heat-labile toxin of Escherichia coli (LTK63) induces a complete protection against malaria challenge. Vaccine 2009; 27(8):1266–1271.
  • Schofield, L., Ferreira, A., Altszuler, R., Nussenzweig, V., Nussenzweig, R. S. Interferon-gamma inhibits the intrahepatocytic development of malaria parasites in vitro. J. Immunol. 1987; 139:2020–2025.
  • Sinnis, P., Clavijo, D., Fenyo, B. T., Chait, C., Cerami, V., Nussenzweig. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J. Exp. Med 1994;180:297–306.
  • Snewin, V. A., Premawansa, S., Kapilananda, G. M. G., Ratnayaka, L., Udagama, P. V., Mattei, D. M., Khouri, E., Del Giudice, G. P., Peiris, J. S. M., Mendis, K. N., David, P. H. Transmission blocking immunity in Plasmodium vivax malaria: antibodies raised against a peptide block parasite development in the mosquito vector. J. Exp. Med 1995;181:357–362.
  • Sun, S., Kishimoto, H., Sprent, J. DNA as an adjuvant: capacity of insect DNA and synthetic oligodeoxynucleotides to augment T cell responses to specific antigen. J. Exp. Med. 1998;187:1145–1150.
  • Sun, S., Zhang, X., Tough, D. F., Sprent, K., Hacker, H., Heeg, K. Type I interferon-mediated stimulation of T cells by CpG DNA. J. Exp. Med. 1999;188:2335–2342.
  • Taylor-Robinson, A. W., Looker, M. Sensitivity of malaria parasites to nitric oxide at low oxygen tensions. Lancet 1998;351:1630.
  • Walker, P. S., Scharton-Kersten, T., Krieg, A. M., Love-Homan, L., Rowton, E. D., Udey, M. C., Vogel, J. C. Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma-dependent mechanisms. Proc. Natl. Acad. Sci. USA 1999;96: 6970–6975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.