Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 39, 2010 - Issue 4-5
1,508
Views
156
CrossRef citations to date
0
Altmetric
Research Articles

Function of Mucosa-Associated Lymphoid Tissue in Antibody Formation

Pages 303-355 | Published online: 07 May 2010

REFERENCES

  • Agematsu, K., Hokibara, S., Nagumo, H., Komiyama, A. (2000). CD27: a memory B-cell marker. Immunol. Today 21:204–206.
  • Ahmed, R., Gray, D. (1996). Immunological memory and protective immunity: understanding their relation. Science 272:54–60.
  • Ansel, K.M., Ngo, V.N., Hyman, P.L., Luther, S.A., Forster, R., Sedgwick, J.D., Browning, J.L., Lipp, M., Cyster, J.G. (2000). A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314.
  • Arpin, C., de Bouteiller, O., Razanajaona, D., Fugier-Vivier, I., Briere, F., Banchereau, J., Lebecque, S., Liu, Y.J. (1998). The normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cµ-Cδ switch, and λ light chain expression. J. Exp. Med. 187:1169–1178.
  • Baekkevold, E.S., Yamanaka, T., Palframan, R.T., Carlsen, H.S., Reinholt, F.P., von Andrian, U.H., Brandtzaeg, P., Haraldsen, G. (2001). The CCR7 ligand ELC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med. 193:1105–1111.
  • Barone, F., Patel, P., Sanderson, J.D., Spencer, J. (2009). Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination. Mucosal Immunol. 2:495–503.
  • Bartholdy, B., Matthias, P. (2004). Transcriptional control of B cell development and function. Gene 327: 1–23.
  • Beisner, D.R., Ch’en, I.L., Kolla, R.V., Hoffmann, A., Hedrick, S.M. (2005). Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175:3469–3473.
  • Bernasconi, N.L., Traggiai, E., Lanzavecchia, A. (2002). Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202.
  • Bjerke, K., Brandtzaeg, P. (1988). Lack of relation between expression of HLA-DR and secretory component (SC) in follicle-associated epithelium of human Peyer’s patches. Clin. Exp. Immunol. 71:502–507.
  • Bleul, C.C., Schultze, J.L., Springer, T.A. (1998). B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement. J. Exp. Med. 187:753–762.
  • Bode, U., Wonigeit, K., Pabst, R., Westermann, J. (1997). The fate of activated T cells migrating through the body: rescue from apoptosis in the tissue of origin. Eur. J. Immunol. 27:2087–2093.
  • Bos, N.A., Bun, J.C., Popma, S.H., Cebra, E.R., Deenen, G.J., van der Cammen, M.J., Kroese, F.G., Cebra, J.J. (1996). Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun. 64:616–623.
  • Bos, N.A., Jiang, H.Q., Cebra, J.J. (2001). T cell control of the gut IgA response against commensal bacteria. Gut 48:762–764.
  • Boursier, L., Dunn-Walters, D.K., Spencer, J. (1999). Characteristics of IgVH genes used by human intestinal plasma cells from childhood. Immunology 97: 558–564.
  • Boursier, L., Farstad, I.N., Mellembakken, J.R., Brandtzaeg, P., Spencer, J. (2002). IgVH gene analysis suggests that peritoneal B cells do not contribute to the gut immune system in man. Eur. J. Immunol. 32:2427–2436.
  • Bouskra, D., Brézillon, C., Bérard, M., Werts, C., Varona, R., Boneca, I.G., Eberl, G. (2008). Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–510.
  • Bouvet, J.P., Fischetti, V.A. (1999). Diversity of antibody-mediated immunity at the mucosal barrier. Infect. Immun. 67:2687–2691.
  • Bradley, L.M., Watson, S.R. (1996). Lymphocyte migration into tissue: the paradigm derived from CD4 subsets. Curr. Opin. Immunol. 8:312–320.
  • Brandtzaeg, P. (1973). Two types of IgA immunocytes in man. Nature New Biol. 243:142–143.
  • Brandtzaeg, P. (1974). Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 252:418–420.
  • Brandtzaeg, P. (1983). The secretory immune system of lactating human mammary glands compared with other exocrine organs. Ann. N.Y. Acad. Sci. 409:353–381.
  • Brandtzaeg, P. (1987). Immune functions and immunopathology of palatine and nasopharyngeal tonsils. In Immunology of the Ear ( eds., J.M. Bernstein and P.L. Ogra), pp. 63–106. Raven Press, New York.
  • Brandtzaeg, P. (1999). Regionalized immune function of tonsils and adenoids. Immunol. Today 20:383–384.
  • Brandtzaeg, P. (2003). Immunology of tonsils and adenoids: everything the ENT surgeon needs to know. International Congress Series (ICS) 1254: 89-993 (Elsevier)/Int. J. Pediatr. Otorhinolaryngol. 67 (Suppl. 1):S69–76.
  • Brandtzaeg, P. (2007). Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25:5467–5484.
  • Brandtzaeg, P. (2009). Mucosal immunity: induction, dissemination, and effector functions. Scand. J. Immunol. 70:505–515.
  • Brandtzaeg, P. (2010). The mucosal immune system and its integration with the mammary glands. J. Pediat. 156: (Suppl. 1): S8–S15.
  • Brandtzaeg, P., Baekkevold, E.S., Farstad, I.N., Jahnsen, F.L., Johansen, F.-E., Nilsen, E.M., Yamanaka, T. (1999). Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol. Today 20:141–151.
  • Brandtzaeg, P., Baekkevold, E.S., Morton, H.C. (2001). From B to A the mucosal way. Nature Immunol. 2:1093–1094.
  • Brandtzaeg, P., Carlsen, H.S., Halstensen, T.S. (2006). The B-cell system in inflammatory bowel disease. Adv. Exp. Med. Biol. 579:149–167.
  • Brandtzaeg, P., Farstad, I.N., Johansen, F.-E., Morton, H.C., Norderhaug, I.N., Yamanaka, T. (1999). The B-cell system of human mucosae and exocrine glands. Immunol. Rev. 171:45–87.
  • Brandtzaeg, P., Fjellanger, I., Gjeruldsen, S.T. (1968). Adsorption of immunoglobulin A onto oral bacteria in vivo. J. Bacteriol. 96:242–249.
  • Brandtzaeg, P., Halstensen, T.S. (1992). Immunology and immunopathology of tonsils. Adv. Otorhinolaryngol. 47:64–75.
  • Brandtzaeg, P., Halstensen, T.S., Kett, K., Krajci, P., Kvale, D., Rognum, T.O., Scott, H., Sollid, L.M. (1989). Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 97: 1562–1584.
  • Brandtzaeg, P., Johansen, F.-E. (2005). Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol. Rev. 206: 32–63.
  • Brandtzaeg, P., Karlsson, G., Hansson, G., Petruson, B., Björkander, J., Hanson, L. Å. (1987). The clinical condition of IgA-deficient patients is related to the proportion of IgD- and IgM-producing cells in their nasal mucosa. Clin. Exp. Immunol. 67: 626–636.
  • Brandtzaeg, P., Kiyono, H., Pabst, R., Russell, M.W. (2008). Terminology: Nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 1: 31–37.
  • Brandtzaeg, P., Pabst, R. (2004). Let’s go mucosal: communication on slippery ground. Trends Immunol. 25: 570–577.
  • Brandtzaeg, P., Prydz, H. (1984). Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311: 71–73.
  • Campbell, D.J., Butcher, E.C. (2002). Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195: 135–141.
  • Carlsen, H.S., Baekkevold, E.S., Johansen, F.-E., Haraldsen, G., Brandtzaeg, P. (2002). B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut 51:364–371.
  • Carlsen, H.S., Baekkevold, E.S., Morton, H.C., Haraldsen, G., Brandtzaeg, P. (2004). Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 104: 3021–3027.
  • Carlsen, H.S., Haraldsen, G., Brandtzaeg, P., Baekkevold, E.S. (2005). Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood 106:444–446.
  • Casola, S., Otipoby, K.L., Alimzhanov, M., Humme, S., Uyttersprot, N., Kutok, J.L., Carroll, M.C., Rajewsky, K. (2004). B cell receptor signal strength determines B cell fate. Nat. Immunol. 5:317–327.
  • Castigli, E., Scott, S., Dedeoglu, F., Bryce, P., Jabara, H., Bhan, A.K., Mizoguchi, E., Geha, R.S. (2004). Impaired IgA class switching in APRIL-deficient mice. Proc. Natl. Acad. Sci. USA 101:3903–3908.
  • Cazac, B.B., Roes, J. (2000). TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13:443–451.
  • Cerutti, A., Rescigno, M. (2008). The biology of intestinal immunoglobulin A responses. Immunity 28:740–750.
  • Chabot, S.M., Chernin, T.S., Shawi, M., Wagner, J., Farrant, S., Burt, D.S., Cyr, S., Neutra, M.R. (2007). TLR2 activation by proteosomes promotes uptake of particulate vaccines at mucosal surfaces. Vaccine 25:5348–5358.
  • Chang, S.Y., Cha, H.R., Uematsu, S., Akira, S., Igarashi, O., Kiyono, H., Kweon, M.N. (2008). Colonic patches direct the cross-talk between systemic compartments and large intestine independently of innate immunity. J. Immunol. 180:1609–1618.
  • Chaplin, D.D., Fu, Y. (1998). Cytokine regulation of secondary lymphoid organ development. Curr. Opin. Immunol. 10:289–297.
  • Chaudhuri, J., Alt, F.W. (2004). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4:541–552.
  • Chen, K., Xu, W., Wilson, M., He, B., Miller, N.W., Bengtén, E., Edholm, E.S., Santini, P.A., Rath, P., Chiu, A., Cattalini, M., Litzman, J., Bussel, J.B., Huang, B., Meini, A., Riesbeck, K., Cunningham-Rundles, C., Plebani, A., Cerutti, A. (2009). Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol. 10:889–898.
  • Chtanova, T., Tangye, S.G., Newton, R., Frank, N., Hodge, M.R., Rolph, M.S., Mackay, C.R. (2004). T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173:68–78.
  • Conley, M.E., Bartelt, M.S. (1984). In vitro regulation of IgA subclass synthesis. II. The source of IgA2 plasma cells. J. Immunol. 133:2312–2316.
  • Cornes, J.S. (1965). Number, size, and distribution of Peyer’s patches in the human small intestine: Part I The development of Peyer’s patches. Gut 6:225–229.
  • Corthésy, B. (2007). Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J. Immunol. 178:27–32.
  • Crabbé, P.A., Nash, D.R., Bazin, H., Eyssen, H., Heremans JF. (1970). Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab. Invest. 22:448–457.
  • Craig, S.W., Cebra, J.J. (1971). Peyer’s patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134:188–200.
  • Crotty, S., Johnston, R.J., Schoenberger, S.P. (2010). Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11:114–120.
  • Debertin, A.S., Tschernig, T., Tonjes, H., Kleemann, W.J., Troger, H.D., Pabst, R. (2003). Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin. Exp. Immunol. 134:503–7.
  • Drenth, J.P., Goertz, J., Daha, M.R., van der Meer, J.W. (1996). Immunoglobulin D enhances the release of tumor necrosis factor-α, and interleukin-1β as well as interleukin-1 receptor antagonist from human mononuclear cells. Immunology 88:355–362.
  • Dunkley, M.L., Husband, A.J. (1990–91). The role of non B cells in localizing an IgA plasma cell response in the intestine. Reg. Immunol. 3:336–340.
  • Dunn-Walters, D.K., Boursier, L., Spencer, J. (1997a). Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur. J. Immunol. 27:2959–2964.
  • Dunn-Walters, D.K., Hackett, M., Boursier, L., Ciclitira, P.J., Morgan, P., Challacombe, S.J., Spencer, J. (2000). Characteristics of human IgA and IgM genes used by plasma cells in the salivary gland resemble those used in duodenum but not those used in the spleen. J. Immunol. 164:1595–1601.
  • Dunn-Walters, D.K., Isaacson, P.G., Spencer, J. (1997b). Sequence analysis of human IgVH genes indicates that ileal lamina propria plasma cells are derived from Peyer’s patches. Eur. J. Immunol. 27:463–467.
  • Eberl, G., Lochner, M. (2009). The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2:478–485.
  • Ehrenstein, M.R., O’Keefe, T.L., Davies, S.L., Neuberger, M.S. (1998). Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl. Acad. Sci. USA 95:10089–10093.
  • Endsley, M.A., Njongmeta, L.M., Shell, E., Ryan, M.W., Indrikovs, A.J., Ulualp, S., Goldblum, R.M., Mwangi, W., Estes, D.M. (2009). Human IgA-inducing protein from dendritic cells induces IgA production by naive IgD+ B cells. J. Immunol 182:1854–1859.
  • Fagarasan, S., Honjo, T. (2003). Intestinal IgA synthesis: regulation of front-line body defences. Nature Rev. Immunol. 3:63–72.
  • Fagarasan, S., Muramatsu, M., Suzuki, K., Nagaoka, H., Hiai, H., Honjo, T. (2002). Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298:1424–1427.
  • Fahlén-Yrlid, L., Gustafsson, T., Westlund, J., Holmberg, A., Strömbeck, A., Blomquist, M., MacPherson, G.G., Holmgren, J., Yrlid, U. (2009). CD11chigh dendritic cells are essential for activation of CD4+ T cells and generation of specific antibodies following mucosal immunization. J. Immunol. 183:5032–5041.
  • Farstad, I.N., Carlsen, H., Morton, H.C., Brandtzaeg, P. (2000). Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics. Immunology 101:354–363.
  • Farstad, I.N., Halstensen, T.S., Fausa, O., Brandtzaeg, P. (1994). Heterogeneity of M‐cell-associated B and T cells in human Peyer’s patches. Immunology 83:457–464.
  • Farstad, I.N., Halstensen, T.S., Kvale, D., Fausa, O., Brandtzaeg, P. (1997a). Topographic distribution of homing receptors on B and T cells in human gut-associated lymphoid tissue. Relation of L-selectin and integrin α4β7 to naive and memory phenotypes. Am. J. Pathol. 150:187–199.
  • Farstad, I.N., Norstein, J., Brandtzaeg, P. (1997b). Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology 112:163–173.
  • Finke, D., Acha-Orbea, H., Mattis, A., Lipp, M., Kraehenbuhl, J. (2002). CD4+CD3- cells induce Peyer’s patch development: role of α4β1 integrin activation by CXCR5. Immunity 17:363–373.
  • Fischer, M., Kuppers, R. (1998). Human IgA and IgM secreting intestinal plasma cells carry heavily mutated VH region genes. Eur. J. Immunol. 28:2971–2977.
  • Fu, Y.X., Huang, G., Wang, Y., Chaplin, D.D. (1998). B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin α-dependent fashion. J. Exp. Med. 187:1009–1018.
  • Fujisaka, M., Ohtani, O., Watanabe, Y. (1996). Distribution of lymphatics in human palatine tonsils: a study by enzyme histochemistry and scanning electron microscopy of lymphatic corrosion casts. Arch. Histol. Cytol. 59:273–280.
  • Fukuyama, S., Hiroi, T., Yokota, Y., Rennert, P.D., Yanagita, M., Kinoshita, N., Terawaki, S., Shikina, T., Yamamoto, M., Kurono, Y., Kiyono, H. (2002). Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3–CD4+CD45+ cells. Immunity 17:31–40.
  • Garside, P., Ingulli, E., Merica, R.R., Johnson, J.G., Noelle, R.J., Jenkins, M.K. (1998). Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281:96–99.
  • Gerdts, V., Uwiera, R.R., Mutwiri, G.K., Wilson, D.J., Bowersock, T., Kidane, A., Babiuk, L.A., Griebel, P.J. (2001). Multiple intestinal ‘loops’ provide an in vivo model to analyse multiple mucosal immune responses. J. Immunol. Methods 256:19–33.
  • Gommerman, J.L., Mackay, F., Donskoy, E., Meier, W., Martin, P., Browning, J.L. (2002). Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J. Clin. Invest. 110:1359–1369.
  • Gowans, J.L., Knight, E.J. (1964). The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B Biol. Sci. 159:257–282.
  • Grouard, G., Durand, I., Filgueira, L., Banchereau, J., Liu, Y.-J. (1996). Dendritic cells capable of stimulating T cells in germinal centres. Nature 384:364–367.
  • Gütgemann, I., Fahrer, A.M., Altman, J.D., Davis, M.M., Chien, Y.H. (1998). Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8:667–673.
  • Guy-Grand, D., Griscelli, C., Vassalli, P. (1974). The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur. J. Immunol. 4:435–443.
  • Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., Kaminogawa, S., Takahashi-Iwanaga, H., Iwanaga, T., Kiyono, H., Yamamoto, H., Ishikawa, H. (2002). Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168:57–64.
  • Hanai, J., Chen, L.F., Kanno, T., Ohtani-Fujita, N., Kim, W.Y., Guo, W.H., Imamura, T., Ishidou, Y., Fukuchi, M., Shi, M.J., Stavnezer, J., Kawabata, M., Miyazono, K., Ito, Y. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274:31577–31582.
  • Harmsen, A., Kusser, K., Hartson, L., Tighe, M., Sunshine, M.J., Sedgwick, J.D., Choi, Y., Littman, D.R., Randall, T.D. (2002). Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-α (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα dependent. J. Immunol. 168:986–990.
  • Hase, K., Kawano, K., Nochi, T., Pontes, G.S., Fukuda, S., Ebisawa, M., Kadokura, K., Tobe, T., Fujimura, Y., Kawano, S., Yabashi, A., Waguri, S., Nakato, G., Kimura, S., Murakami, T., Iimura, M., Hamura, K., Fukuoka, S., Lowe, A.W., Itoh, K., Kiyono, H., Ohno, H. (2009). Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462:226–230.
  • Heier, I., Malmström, K., Pelkonen, A.S., Malmberg, S.P., Kajosaari, M., Turpeinen, M., Lindahl, H., Brandtzaeg, P., Jahnsen, F.L., Mäkelä, M.J. (2008). Bronchial response pattern of antigen presenting cells and regulatory T cells in children less than 2 years of age. Thorax 63:703–709.
  • Henriksson, G., Helgeland, L., Midtvedt, T., Stierna, P., Brandtzaeg, P. (2004). Immune response to Mycoplasma pulmonis in nasal mucosa is modulated by the normal microbiota. Am. J. Respir. Cell Mol. Biol. 31:657–662.
  • Hieshima, K., Kawasaki, Y., Hanamoto, H., Nakayama, T., Nagakubo, D., Kanamaru, A., Yoshie, O. (2004). CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J. Immunol. 173: 3668–3675.
  • Hiller, A.S., Tschernig, T., Kleemann, W.J., Pabst, R. (1998). Bronchus-associated lymphoid tissue (BALT) and larynx-associated lymphoid tissue (LALT) are found at different frequencies in children, adolescents and adults. Scand. J. Immunol. 47:159–162.
  • Holtmeier, W., Hennemann, A., Caspary, W.F. (2000). IgA and IgM VH repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119:1253–1266.
  • Huard, B., McKee, T., Bosshard, C., Durual, S., Matthes, T., Myit, S., Donze, O., Frossard, C., Chizzolini, C., Favre, C., Zubler, R., Guyot, J.P., Schneider, P., Roosnek, E. (2008). APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J. Clin. Invest. 118:2887–2895.
  • Irjala, H., Elima, K., Johansson, E.L., Merinen, M., Kontula, K., Alanen, K., Grenman, R., Salmi, M., Jalkanen, S. (2003). The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur. J. Immunol. 33:815–824.
  • Islam, K.B., Nilsson, L., Sideras, P., Hammarström, L., Smith, C.I. (1991). TGF-β 1 induces germ-line transcripts of both IgA subclasses in human B lymphocytes. Int. Immunol. 3:1099–1106.
  • Jahnsen, F.L., Gran, E., Haye, R., Brandtzaeg, P. (2004). Human nasal mucosa contains antigen-presenting cells of strikingly different functional phenotypes. Am. J. Respir. Cell Mol. Biol. 30:31–37.
  • Janson, H., Hedén, L.-O., Grubb, A., Ruan, M., Forsgren, A. (1991). Protein D, an immunoglobulin D-binding protein of Haemophilus influenzae: cloning, nucleotide sequence, and expressionin Escherichia coli. Infect. Immun. 59:119–125.
  • Jiang, H.-Q., Bos, N.A., Cebra, J.J. (2001). Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups. Infect. Immun. 69:3611–3617.
  • Johansen, F.-E., Baekkevold, E.S., Carlsen, H.S., Farstad, I.N., Soler, D., Brandtzaeg, P. (2005). Regional induction of adhesion molecules and chemokine receptors explains disparate homing of human B cells to systemic and mucosal effector sites: dispersion from tonsils. Blood 106:593–600.
  • Kernéis, S., Bogdanova, A., Kraehenbuhl, J.-P., Pringault, E. (1997). Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952.
  • Kett, K., Baklien, K., Bakken, A., Kral, J.G., Fausa, O., Brandtzaeg, P. (1995). Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology 109:819–825.
  • Kim, C.H., Rott, L.S., Clark-Lewis, I., Campbell, D.J., Wu, L., Butcher, E.C. (2001). Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193:1373–1381.
  • King, C. (2009). New insights into the differentiation and function of T follicular helper cells. Nat. Rev. Immunol. 9:757–766.
  • Kiyono, H., Fukuyama, S. (2004). NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4:699–710.
  • Kraal, G. (2008). Antigens take the shuttle. Nat. Immunol. 9:11–12.
  • Kroese, F.G., Butcher, E.C., Stall, A.M., Lalor, P.A., Adams, S., Herzenberg, L.A. (1989). Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1:75–84.
  • Kunisawa, J., Nochi, T., Kiyono, H. (2008). Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 29:505–513.
  • Kunkel, E.J., Butcher, E.C. (2002). Chemokines and the tissue-specific migration of lymphocytes. Immunity 16:1–4.
  • Kunkel, E.J., Kim, C.H., Lazarus, N.H., Vierra, M.A., Soler, D., Bowman, E.P., Butcher, E.C. (2003). CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J. Clin. Invest. 111:1001–1010.
  • Kuper, C.F., Koornstra, P.J., Hameleers, D.M.H., Biewenga, J., Spit, B.J., Duijvestijn, A.M., van Breda Vriesman, P.J., Sminia, T. (1992). The role of nasopharyngeal lymphoid tissue. Immunol. Today 13:219–224.
  • Lamm, M.E. (1976). Cellular aspects of immunoglobulin A. Adv. Immunol. 22: 223–290.
  • Lane, P.J., McConnell, F.M., Withers, D., Gaspal, F., Saini, M., Anderson, G. (2009). Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol. 2:472–477.
  • Lanning, D.K., Rhee, K.J., Knight, K.L. (2005). Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol. 26:419–425.
  • Lebecque, S., de Bouteiller, O., Arpin, C., Banchereau, J., Liu, Y.J. (1997). Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J. Exp. Med. 185:563–571.
  • Levine, M.M. (2003). Can needle-free administration of vaccines become the norm in global immunization? Nat. Med. 9:99–103.
  • Lin, Y.C., Stavnezer, J. (1992). Regulation of transcription of the germ-line Igα constant region gene by an ATF element and by novel transforming growth factor-β1-responsive elements. J. Immunol. 149:2914–2925.
  • Lindhout, E., Koopman, G., Pals, S.T., de Groot, C. (1997). Triple check for antigen specificity of B cells during germinal centre reactions. Immunol. Today 18:573–577.
  • Litinskiy, M.B., Nardelli, B., Hilbert, D.M., He, B., Schaffer, A., Casali, P., Cerutti, A. (2002). DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 3:822–829.
  • Linterman, M.A., Vinuesa, C.G. (2010). Signals that influence T follicular helper cell differentiation and function. Semin. Immunopathol. [Epub ahead of print Jan 27] PubMed PMID: 20107805.
  • Liu, Y.-J., Arpin, C. (1997). Germinal center development. Immunol. Rev. 156:111–126.
  • Liu, Y.-J., Arpin, C., de Bouteiller, O., Guret, C., Banchereau, J., Martinez Valdez, H., Lebecque, S. (1996). Sequential triggering of apoptosis, somatic mutation and isotype switch during germinal center development. Sem. Immunol. 8:169–177.
  • Liu Y.-J., Barthélémy C., de Bouteiller O., Arpin C., Durand I., Banchereau J. (1995). Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7-1 and B7-2. Immunity 2:239–248.
  • Lorenz, R.G., Chaplin, D.D., McDonald, K.G., McDonough, J.S., Newberry, R.D. (2003). Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J. Immunol. 170:5475–5482.
  • MacLennan, I.C.M., Gulbranson-Judge, A., Toellner, K.M., Casamayor-Palleja, M., Chan, E., Sze, D.M., Luther, S.A., Orbea, H.A. (1997). The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunol. Rev. 156:53–66.
  • Macpherson, A.J., Gatto, D., Sainsbury, E., Harriman, G.R., Hengartner, H., Zinkernagel, R.M. (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226.
  • Macpherson, A.J., Geuking, M.B., McCoy, K.D. (2005). Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115:153–162.
  • Macpherson, A.J., McCoy, K.D., Johansen, F.E., Brandtzaeg, P. (2008). The immune geography of IgA induction and function. Mucosal Immunol. 1:11–22.
  • Macpherson, A.J., Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665.
  • Manser, T. (2004). Textbook germinal centers? J. Immunol. 172:3369–3375.
  • Marchesi, F., Martin, A.P., Thirunarayanan, N., Devany, E., Mayer, L., Grisotto, M.G., Furtado, G.C., Lira, S.A. (2009). CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles. Mucosal Immunol. 2:486–494.
  • Massacand, J.C., Kaiser, P., Ernst, B., Tardivel, A., Bürki, K., Schneider, P., Harris, N.L. (2008). Intestinal bacteria condition dendritic cells to promote IgA production. PLoS One 3:e2588.
  • Mayrhofer, G., Fisher, R. (1979). IgA-containing plasma cells in the lamina propria of the gut: failure of a thoracic duct fistula to deplete the numbers in rat small intestine. Eur. J. Immunol. 9:85–91.
  • Mazmanian, S.K., Liu, C.H., Tzianabos, A.O., Kasper, D.L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118.
  • McDermott, M.R., Bienenstock, J. (1979). Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J. Immunol. 122:1892–1898.
  • McWilliams, M., Phillips-Quagliata, J.M., Lamm, M.E. (1977). Mesenteric lymph node B lymphoblasts which home to the small intestine are precommitted to IgA synthesis. J. Exp. Med. 145:866–875.
  • Menezes, J.S., Mucida, D.S., Cara, D.C., Alvarez-Leite, J.I., Russo, M., Vaz, N.M., de Faria, A.M. (2003). Stimulation by food proteins plays a critical role in the maturation of the immune system. Int. Immunol. 15:447–455.
  • Merville, P., Dechanet, J., Desmouliere, A., Durand, I., de Bouteiller, O., Garrone, P., Banchereau, J., Liu, Y.J. (1996). Bcl 2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts. J. Exp. Med. 183:227–236.
  • Moghaddami, M., Cummins, A., Mayrhofer, G. (1998). Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115:1414–1425.
  • Mora, J.R., von Andrian, U.H. (2008). Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1:96–109.
  • Moser, B., Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Nat. Immunol. 2:123–128.
  • Moser, B., Schaerli, P., Loetscher, P. (2002). CXCR5+ T cells: follicular homing takes center stage in T-helper-cell responses. Trends Immunol. 23:250–254.
  • Moyron-Quiroz, J.E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., Woodland, D.L., Lund, F.E., Randall, T.D. (2004). Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10:927–934.
  • Nadal, D., Albini, B., Chen, C.Y., Schläpfer, E., Bernstein, J.M., Ogra, P.L. (1991). Distribution and engraftment patterns of human tonsillar mononuclear cells and immunoglobulin secreting cells in mice with severe combined immunodeficiency: role of the Epstein Barr virus. Int. Arch. Allergy Appl. Immunol. 95:341–351.
  • Nakayama, T., Hieshima, K., Izawa, D., Tatsumi, Y., Kanamaru, A., Yoshie, O. (2003). Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J. Immunol. 170:1136–1140.
  • Neutra, M.R., Mantis, N.J., Kraehenbuhl, J.P. (2001). Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2:1004–1009.
  • Niess, J.H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B.A., Vyas, J.M., Boes, M., Ploegh, H.L., Fox, J.G., Littman, D.R., Reinecker, H.C. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–258.
  • Nilssen, D.E., Øktedalen, O., Brandtzaeg, P. (2004). Intestinal B cell hyperactivity in AIDS is controlled by highly active antiretroviral therapy. Gut 53:487–493.
  • Okada, T., Ngo, V.N., Ekland, E.H., Forster, R., Lipp, M., Littman, D.R., Cyster, J.G. (2002). Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J. Exp. Med. 196:65–75.
  • Okuda, M., Togawa, A., Wada, H., Nishikawa, S. (2007). Distinct activities of stromal cells involved in the organogenesis of lymph nodes and Peyer’s patches. J. Immunol. 179:804–811.
  • O’Leary, A.D., Sweeney, E.C. (1986). Lymphoglandular complexes of the colon: structure and distribution. Histopathology 10:267–283.
  • Pardali, E., Xie, X.Q., Tsapogas, P., Itoh, S., Arvanitidis, K., Heldin, C.H., ten Dijke, P., Grundström, T., Sideras, P. (2000). Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes. J. Biol Chem. 275:3552–3560.
  • Park, H.S., Francis, K.P., Yu, J., Cleary, P.P. (2003). Membranous cells in nasal-associated lymphoid tissue: a portal of entry for the respiratory mucosal pathogen group A streptococcus. J. Immunol. 171:2532–2537.
  • Parkhouse, R.M.E., Cooper, M.D. (1977). A model for the differentiation of B lymphocytes with implications for the biological role of IgD. Immunol. Rev. 37:105–126.
  • Parrott, D.M. (1976). The gut as a lymphoid organ. Clin. Gastroenterol. 5:211–228.
  • Preud’homme, J.L., Petit, I., Barra, A., Morel, F., Lecron, J.C., Lelièvre, E. (2000). Structural and functional properties of membrane and secreted IgD. Mol. Immunol. 37:871–887.
  • Qiu, G., Stavnezer, J. (1998). Overexpression of BSAP/Pax-5 inhibits switching to IgA and enhances switching to IgE in the I.29 mu B cell line. J. Immunol. 161:2906–2918.
  • Quiding-Järbrink, M., Granström, G., Nordström, I., Holmgren, J., Czerkinsky, C. (1995). Induction of compartmentalized B cell responses in human tonsils. Infect. Immun. 63:853–857.
  • Quiding-Järbrink, M., Nordström, I., Granström, G., Kilander, A., Jertborn, M., Butcher, E.C., Lazarovits, A.I., Holmgren, J., Czerkinsky, C. (1997). Differential expression of tissue specific adhesion molecules on human circulating antibody forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses. J. Clin. Invest. 99:1281–1286.
  • Randall, T.D., Heath, A.W., Santos-Argumedo, L., Howard, M.C., Weissman, I.L., Lund, F.E. (1998). Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Immunity 8:733–742.
  • Rangel-Moreno, J., Moyron-Quiroz, J.E., Carragher, D.M., Kusser, K., Hartson, L., Moquin, A., Randall, T.D. (2009). Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 30:731–743.
  • Reif, K., Ekland, E.H., Ohl, L., Nakano, H., Lipp, M., Forster, R., Cyster, J.G. (2002). Balanced responsiveness to chemoattractants from adjacent zones determines B‐cell position. Nature 416:94–99.
  • Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J.P., Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2:361–367.
  • Rhee, K.J., Sethupathi, P., Driks, A., Lanning, D.K., Knight, K.L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172:1118–1124.
  • Roux, M.E., McWilliams, M., Phillips-Quagliata, J.M., Lamm, M.E. (1981). Differentiation pathway of Peyer’s patch precursors of IgA plasma cells in the secretory immune system. Cell. Immunol. 61:141–153.
  • Rugtveit, J., Bakka, A., Brandtzaeg, P. (1997). Differential distribution of B7.1 (CD80) and B7.2 (CD86) co-stimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin. Exp. Immunol. 110:104–113.
  • Rumbo, M., Sierro, F., Debard, N., Kraehenbuhl, J.P., Finke, D. (2004). Lymphotoxin β receptor signaling induces the chemokine CCL20 in intestinal epithelium. Gastroenterology 127:213–223.
  • Schippers, A., Leuker, C., Pabst, O., Kochut, A., Prochnow, B., Gruber, A.D., Leung, E., Krissansen, G.W., Wagner, N., Müller, W. (2009). Mucosal addressin cell-adhesion molecule-1 controls plasma-cell migration and function in the small intestine of mice. Gastroenterology 137:924–933.
  • Shikina, T., Hiroi, T., Iwatani, K., Jang, M.H., Fukuyama, S., Tamura, M., Kubo, T., Ishikawa, H., Kiyono, H. (2004). IgA class switch occurs in the organized nasopharynx- and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J. Immunol. 172:6259–6264.
  • Shimoda, M., Nakamura, T., Takahashi, Y., Asanuma, H., Tamura, S., Kurata, T., Mizuochi, T., Azuma, N., Kanno, C., Takemori, T. (2001). Isotype-specific selection of high affinity memory B cells in nasal-associated lymphoid tissue. J. Exp. Med. 194:1597–1607.
  • Shroff, K.E., Meslin, K., Cebra, J.J. (1995). Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63:3904–3913.
  • Sinha, R.K., Park, C., Hwang, I.Y., Davis, M.D., Kehrl, J.H. (2009). B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30:434–446.
  • Spencer, J., Perry, M.E., Dunn-Walters, D.K. (1998). Human marginal-zone B cells. Immunol. Today 19:421–426.
  • Stoel, M., Jiang, H.Q., van Diemen, C.C., Bun, J.C., Dammers, P.M., Thurnheer, M.C., Kroese, F.G., Cebra, J.J., Bos, N.A. (2005). Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J. Immunol. 174:1046–1054.
  • Suzuki, K., Fagarasan, S. (2008). How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol. 29:523–531.
  • Suzuki, K., Grigorova, I., Phan, T.G., Kelly, L.M., Cyster, J.G. (2009). Visualizing B cell capture of cognate antigen from follicular dendritic cells. J. Exp. Med. 206:1485–1493.
  • Talham, G.L., Jiang, H.Q., Bos, N.A., Cebra, J.J. (1999). Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 67:1992–2000.
  • Tarlinton, D. (1998). Germinal centers: form and function. Curr. Opin. Immunol. 10: 245–251.
  • Tezuka, H., Abe, Y., Iwata, M., Takeuchi, H., Ishikawa, H., Matsushita, M., Shiohara, T., Akira, S., Ohteki, T. (2007). Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448:929–933.
  • Tezuka, H., Abe, Y., Iwata, M., Takeuchi, H., Ishikawa, H., Matsushita, M., Shiohara, T., Akira, S., Ohteki, T. (2007). Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448:929–933.
  • Toellner, K.M., Jenkinson, W.E., Taylor, D.R., Khan, M., Sze, D.M., Sansom, D.M., Vinuesa, C.G., MacLennan, I.C. (2002). Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J. Exp. Med. 195:383–389.
  • Trepel, F. (1974). Number and distribution of lymphocytes in man. A critical analysis. Klin. Wochenschr. 52:511–515.
  • Tschernig, T., Pabst, R. (2000). Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology 68:1–8.
  • Tsuji, M., Komatsu, N., Kawamoto, S., Suzuki, K., Kanagawa, O., Honjo, T., Hori, S., Fagarasan, S. (2009). Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323:1488–1492.
  • Tsuji, M., Suzuki, K., Kitamura, H., Maruya, M., Kinoshita, K., Ivanov, I., Itoh, K., Littman, D.R., Fagarasan, S. (2008). Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29:261–271.
  • Tumanov, A.V., Kuprash, D.V., Mach, J.A., Nedospasov, S.A., Chervonsky, A.V. (2004). Lymphotoxin and TNF produced by B cells are dispensable for maintenance of the follicle-associated epithelium but are required for development of lymphoid follicles in the Peyer’s patches. J. Immunol. 173:86–91.
  • Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A., Setoyama, H. (1995). Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39:555–562.
  • van der Waaij, L.A., Limburg, P.C., Mesander, G., van der Waaij, D. (1996). In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38:348–354.
  • Van Kruiningen, H.J., West, A.B., Freda, B.J., Holmes, K.A. (2002). Distribution of Peyer’s patches in the distal ileum. Inflamm. Bowel Dis. 8:180–185.
  • Velaga, S., Herbrand, H., Friedrichsen, M., Jiong, T., Dorsch, M., Hoffmann, M.W., Förster, R., Pabst, O. (2009). Chemokine receptor CXCR5 supports solitary intestinal lymphoid tissue formation, B cell homing, and induction of intestinal IgA responses. J. Immunol. 182:2610–2619.
  • von Gaudecker, B., Müller-Hermelink, H.K. (1982). The development of the human tonsilla palatina. Cell. Tissue Res. 224:579–600.
  • Wang, C., McDonough, J.S., McDonald, K.G., Huang, C., Newberry, R.D. (2008). α4β7/MAdCAM-1 interactions play an essential role in transitioning cryptopatches into isolated lymphoid follicles and a nonessential role in cryptopatch formation. J. Immunol. 181:4052–4061.
  • Warnock, R.A., Campbell, J.J., Dorf, M.E., Matsuzawa, A., McEvoy, L.M., Butcher, E.C. (2000). The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer’s patch high endothelial venules. J. Exp. Med. 191:77–88.
  • Williams, A.F., Gowans, J.L. (1975). The presence of IgA on the surface of rat thoractic duct lymphocytes which contain internal IgA. J. Exp. Med. 141:335–345.
  • Xu, W., He, B., Chiu, A., Chadburn, A., Shan, M., Buldys, M., Ding, A., Knowles, D.M., Santini, P.A., Cerutti, A. (2007). Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat. Immunol. 8:294–303.
  • Xu, W., Santini, P.A., Sullivan, J.S., He, B., Shan, M., Ball, S.C., Dyer, W.B., Ketas, T.J., Chadburn, A., Cohen-Gould, L., Knowles, D.M., Chiu, A., Sanders, R.W., Chen, K., Cerutti, A. (2009). HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat. Immunol. 10:1008–1017.
  • Yamamoto, M., Kweon, M.N., Rennert, P.D., Hiroi, T., Fujihashi, K., McGhee, J.R., Kiyono, H. (2004). Role of gut-associated lymphoreticular tissues in antigen-specific intestinal IgA immunity. J. Immunol. 173:762–769.
  • Yamanaka, T., Helgeland, L., Farstad, I.N., Midtvedt, T., Fukushima, H., Brandtzaeg, P. (2003). Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J. Immunol. 170:816–822.
  • Yamanaka, T., Straumfors, A., Morton, H.C., Fausa, O., Brandtzaeg, P., Farstad, I.N. (2001). M cell pockets of human Peyer’s patches are specialized extensions of germinal centers. Eur. J. Immunol. 31: 107–117.
  • Yanagita, M., Hiroi, T., Kitagaki, N., Hamada, S., Ito, H.O., Shimauchi, H., Murakami, S., Okada, H., Kiyono, H. (1999). Nasopharyngeal-associated lymphoreticular tissue (NALT) immunity: fimbriae-specific Th1 and Th2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. J. Immunol. 162:3559–3565.
  • Yoshida, H., Naito, A., Inoue, J., Satoh, M., Santee-Cooper, S.M., Ware, C.F., Togawa, A., Nishikawa, S., Nishikawa, S. (2002). Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer’s patches. Immunity 17:823–833.
  • Yuvaraj, S., Dijkstra, G., Burgerhof, J.G., Dammers, P.M., Stoel, M., Visser, A., Kroese, F.G., Bos, N.A. (2009). Evidence for local expansion of IgA plasma cell precursors in human ileum. J. Immunol. 183:4871–4878.
  • Zan, H., Cerutti, A., Dramitinos, P., Schaffer, A., Casali, P. (1998). CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF β: evidence for TGF β but not IL 10 dependent direct Sµ→Sα and sequential Sµ→Sγ, Sγ→Sα DNA recombination. J. Immunol. 161:5217–5225.
  • Zhang, Y., Derynck, R. (2000). Transcriptional regulation of the transforming growth factor-β-inducible mouse germ line Ig α constant region gene by functional cooperation of Smad, CREB, and AML family members. J. Biol. Chem. 275:16979–16985.
  • Zhao, X., Sato, A., Dela Cruz, C.S., Linehan, M., Luegering, A., Kucharzik, T., Shirakawa, A.K., Marquez, G., Farber, J.M., Williams, I., Iwasaki, A. (2003). CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer’s patch CD11b+ dendritic cells. J. Immunol. 171: 2797–2803. Erratum in: J. Immunol. 172:7220 (2004).
  • Zheng, N.-Y., Wilson, K., Wang, X., Boston, A., Kolar, G., Jackson, S.M., Liu, Y.J., Pascual, V., Capra, J.D., Wilson, P.C. (2004). Human immunoglobulin selection associated with class switch and possible tolerogenic origins for Cδ class-switched B cells. J. Clin. Invest. 113:1188–1201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.