Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 41, 2012 - Issue 1
148
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Reduced in vivo Cytotoxicity and Increased Mycobacterial Burden Are Associated with Virulent Mycobacterium tuberculosis Strains During Lung Infection

, , , , , & show all
Pages 51-60 | Published online: 02 Jun 2011

REFERENCES

  • Aguilar, D., Hanekom, M., Mata, D., Gey van Pittius, N. C., van Helden, P. D., Warren, R. M., Hernandez-Pando, R. (2010). Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis (Edinb.) 90(5):319–325.
  • Anthony, L.S., Chatterjee, D., Brennan, P. J., Nano, F. E. (1994). Lipoarabinomannan from Mycobacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunol. Med. Microbiol. 8(4): 299–305.
  • Armstrong, J.A., Hart, P. D. (1971). Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134 (3Pt1):713–740.
  • Astarie-Dequeker, C., Le, C. G.; Malaga, W.; Seaphanh, F. K.; Chalut, C.; Lopez, A.; Guilhot, C. (2009). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS. Pathog. 5(2), e1000289. doi:10.1371.
  • Baena, A., Porcelli, S. A. (2009). Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 74(3):189–204.
  • Barber, D. L., Wherry, E. J., Ahmed, R. (2003). Cutting edge: Rapid in vivo killing by memory CD8 T cells. J. Immunol. 171(1):27–31.
  • Bifani, P., Kurepina, N., Mathema, B., Wang, X. M. Kreiswirth, B. (2009). Genotyping of Mycobacterium tuberculosis clinical isolates using IS6110-based restriction fragment length polymorphism analysis. Meth. Mol. Biol. 551:173–188.
  • Chacon-Salinas, R., Serafin-Lopez, J., Ramos-Payan, R., Mendez-Aragon, P., Hernandez-Pando, R., Van, S.D., Flores-Romo, L., Estrada-Parra, S., Estrada-Garcia, I. (2005). Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 140(3): 443–449.
  • Chua, J., Vergne, I., Master, S., Deretic, V. (2004). A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr. Opin. Microbiol. 7(1):71–77.
  • Davis, J.M., Ramakrishnan, L. (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136(1):37–49.
  • de Jong, B.C., Hill, P. C., Aiken, A., Awine, T., Antonio, M., Adetifa, I. M., Jackson-Sillah, D. J., Fox, A., Deriemer, K., Gagneux, S., Borgdorff, M. W., McAdam, K. P., Corrah, T., Small, P. M., Adegbola, R. A. (2008). Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J. Infect. Dis. 198(7):1037–1043.
  • de Jonge, M. I., Pehau-Arnaudet, G., Fretz, M. M., Romain, F., Bottai, D., Brodin, P., Honore, N., Marchal, G., Jiskoot, W., England, P., Cole, S. T., Brosch, R. (2007). ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J. Bacteriol. 189(16): 6028–6034.
  • Dormans, J., Burger, M., Aguilar, D., Hernandez-Pando, R., Kremer, K., Roholl, P., Arend, S. M., Van, S. D. (2004). Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin. Exp. Immunol. 137(3): 460–468.
  • Fabre, M., Hauck, Y., Soler, C., Koeck, J. L., Van, I. J., Van, S. D., Vergnaud, G., Pourcel, C. (2010). Molecular characteristics of “Mycobacterium canettii” the smooth Mycobacterium tuberculosis bacilli. Infect. Genet. Evol.
  • Fabre, M., Koeck, J. L., Le, F. P., Simon, F., Herve, V., Vergnaud, G., Pourcel, C. (2004). High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of “Mycobacterium canettii” strains indicates that the M. tuberculosis complex is a recently emerged clone of “M. canettii”. J. Clin. Microbiol. 42(7): 3248–3255.
  • Garcia-Romo, G. S., Pedroza-Gonzalez, A., Aguilar-Leon, D., Orozco-Estevez, H., Lambrecht, B. N., Estrada-Garcia, I., Flores-Romo, L., Hernandez-Pando, R. (2004). Airways infection with virulent Mycobacterium tuberculosis delays the influx of dendritic cells and the expression of costimulatory molecules in mediastinal lymph nodes. Immunology 112(4):661–668.
  • Hernandez-Pando, R., Orozco, H., Sampieri, A., Pavon, L., Velasquillo, C., Larriva-Sahd, J., Alcocer, J. M., Madrid, M. V. (1996). Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology 89(1):26–33.
  • Jurado, J. O., Alvarez, I. B., Pasquinelli, V., Martinez, G. J., Quiroga, M. F., Abbate, E., Mussella, R. M., Chuluyan, E. H., Garcia, V. E. (2008). Programmed Death (PD)-1:PD-ligand 2 pathway inhibits T cell efector functions during human tuberculosis. J. Immunol. 181(1):116–125.
  • Kamath, A., Woodworth, J. S., Behar, S. M. (2006). Antigen-specific CD8+ T cells and the development of central memory during Mycobacterium tuberculosis infection. J. Immunol. 177(9):6361–6369.
  • Kvach, J. T. Veras, J. R. (1982). A fluorescent staining procedure for determining the viability of mycobacterial cells. Int. J. Lepr. Other Mycobact. Dis. 50(2):183–192.
  • Lopez, B., Aguilar, D., Orozco, H., Burger, M., Espitia, C., Ritacco, V., Barrera, L., Kremer, K., Hernandez-Pando, R., Huygen, K., Van, S. D. (2003). Marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 133(1):30–37.
  • Nobrega, C.,Roque, S., Nunes-Alves, C., Coelho, A., Medeiros, I., Castro, A. G., Appelberg, R., Correia-Neves, M. (2010), Dissemination of mycobacteria to the thymus renders newly generated T cells tolerant to the invading pathogen. J. Immunol. 184(1): 351–358.
  • North, R. J. Jung, Y. J. (2004). Immunity to tuberculosis. Annu. Rev. Immunol. 22:599–623.
  • Parwati, I., Van, C. R., Van, S. D. (2010). Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect. Dis. 10(2):103–111.
  • Pathak, S. K., Basu, S., Basu, K. K., Banerjee, A., Pathak, S., Bhattacharyya, A., Kaisho, T., Kundu, M., Basu, J. (2007). Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol. 8(6):610–618.
  • Rogerson, B. J., Jung, Y. J., Lacourse, R., Ryan, L., Enright, N., North, R. J. (2006). Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118(2):195–201.
  • Wang, X., Barnes, P. F., Dobos-Elder, K. M., Townsend, J. C., Chung, Y. T., Shams, H., Weis, S. E., Samten, B. (2009). ESAT-6 inhibits production of IFN-gamma by Mycobacterium tuberculosis-responsive human T cells. J. Immunol. 182(6):3668–3677.
  • Weerdenburg, E. M., Peters, P. J., van der Wel, N. N. (2010). How do mycobacteria activate CD8+ T cells? Trends Microbiol. 18(1):1–10.
  • Wirth, T., Hildebrand, F., Allix-Beguec, C., Wolbeling, F., Kubica, T., Kremer, K., Van, S. D., Rusch-Gerdes, S., Locht, C., Brisse, S. Meyer, A., Supply, P., Niemann, S. (2008). Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS. Pathog. 4(9): e1000160.
  • Wolf, A. J., Desvignes, L., Linas, B., Banaiee, N., Tamura, T., Takatsu, K., Ernst, J. D. (2008). Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205(1):105–115.
  • Wolf, A. J., Linas, B., Trevejo-Nunez, G. J., Kincaid, E., Tamura, T., Takatsu, K., Ernst, J. D. (2007). Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179(4):2509–2519.
  • Woodworth, J. S., Wu, Y., Behar, S. M. (2008). Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo.. J. Immunol. 181(12):8595–8603.
  • World Health Organization (2010). Global tuberculosis control:2010. WHO report 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.