Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 40, 2011 - Issue 7-8
168
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Innate Immunity Against Moulds: Lessons Learned from Invertebrate Models

Pages 676-691 | Published online: 10 Oct 2011

REFERENCES

  • Aimanianda, V., Bayry, J., Bozza, S., (2009). Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121.
  • Alarco, A. M., Marcil, A., Chen, J., Suter, B., Thomas, D., Whiteway, M. (2004). Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J. Immunol. 172:5622–5628.
  • Belvin, M. P., Anderson, K. V. (1996).A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell. Dev. Biol. 12:393–416.
  • Ben-Ami, R., Lamaris, G. A., Lewis, R. E., Kontoyiannis, D. P. (2010). Interstrain variability in the virulence of Aspergillus fumigatus and Aspergillus terreus in a Toll-deficient Drosophila fly model of invasive aspergillosis. Med. Mycol. 48:310–317.
  • Ben-Ami, R., Luna, M., Lewis, R. E., Walsh, T. J., Kontoyiannis, D. P. (2009). A clinicopathological study of pulmonary mucormycosis in cancer patients: extensive angioinvasion but limited inflammatory response. J. Infect. 59:134–138.
  • Bergin, D., Brennan, M., Kavanagh, K. (2003). Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect. 5:1389–1395.
  • Bernard, M., Latge, J. P. (2001). Aspergillus fumigatus cell wall: composition and biosynthesis. Med. Mycol. 39 Suppl 1:9–17.
  • Blandin S, Shiao SH, Moita LF, (2004). Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116:661–670.
  • Boman, H. G., Nilsson, I., Rasmuson, B. (1972). Inducible antibacterial defence system in Drosophila. Nature 237:232–235.
  • Brakhage, A. A., Bruns, S., Thywissen, A., Zipfel, P. F., Behnsen, J. (2010). Interaction of phagocytes with filamentous fungi. Curr. Opin. Microbiol. 13:409–415.
  • Brown, G. D., Gordon, S. (2001). Immune recognition. A new receptor for beta-glucans. Nature 413:36–37.
  • Chamilos, G., Bignell, E. M., Schrettl, M., (2010). Exploring the concordance of Aspergillus fumigatus pathogenicity in mice and Toll-deficient flies. Med. Mycol. 48:506–510.
  • Chamilos, G., Lewis, R. E., Hu, J., (2008). Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc. Natl. Acad. Sci. USA 105:9367–9372.
  • Chamilos, G., Lionakis, M. S., Lewis, R. E., (2006). Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J. Infect. Dis.193:1014–1022.
  • Daffre, S., Kylsten, P., Samakovlis, C., Hultmark, D. (1994). The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol. Gen. Genet. 242:152–162.
  • De Gregorio, E., Spellman, P. T., Rubin, G. M., Lemaitre, B. (2001). Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98:12590–12595.
  • Elrod-Erickson, M., Mishra, S., Schneider, D. (2000). Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol.10:781–784.
  • Fehlbaum, P., Bulet, P., Michaut, L., (1994). Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269:33159–33163.
  • Gottar, M., Gobert, V., Matskevich, A. A., (2006). Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437.
  • Groth, A. C., Fish, M., Nusse, R., Calos, M. P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782.
  • Ha, E. M., Oh, C. T., Bae, Y. S., Lee, W. J. (2005a). A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850.
  • Ha, E. M., Oh, C. T., Ryu, J. H., (2005b). An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8:125–132.
  • Hohl, T. M., Van Epps, H. L., Rivera, A., (2005). Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog.1:e30.
  • Kambris, Z., Hoffmann, J. A., Imler, J. L., Capovilla, M. (2002). Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr. Patterns 2:311–317.
  • Kontoyiannis, D. P., Lewis, R. E. (2006). Invasive zygomycosis: Update on pathogenesis, clinical manifestations, and management. Infect. Dis. Clin. North Am. 20:581–607, vi.
  • Kontoyiannis, D. P., Marr, K. A., Park, B. J., (2010). Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: Overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin. Infect. Dis. 50:1091–1100.
  • Kocks, C., Cho, J. H., Nehme, N., (2005). Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 2005;123:335–46.
  • Lemaitre, B., Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697–743.
  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983.
  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983.
  • Lemaitre, B., Reichhart, J. M., Hoffmann, J. A. (1997). Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94:14614–14619.
  • Levashina, E. A., Langley, E., Green, C., Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 1999;285:1917–1919.
  • Levashina, E. A., Ohresser, S., Bulet, P., Reichhart, J. M., Hetru, C., Hoffmann, J. A. (1995). Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233:694–700.
  • Levitz, S. M. (2004). Interactions of Toll-like receptors with fungi. Microbes Infect. 6:1351–1315.
  • Lionakis, M. S., Lewis, R. E., May, G. S., (2005). Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J. Infect. Dis. 191:1188–1195.
  • Mowlds, P., Barron, A., Kavanagh, K. (2008). Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect. 10:628–634.
  • Mowlds, P., Kavanagh, K. (2008). Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165:5–12.
  • Mylonakis, E., Ausubel, F. M., Perfect, J. R., Heitman, J., Calderwood, S. B. (2002). Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99:15675–15680.
  • Netea, M. G., Warris, A., Van der Meer, J. W., (2003). Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J. Infect. Dis. 188:320–326.
  • Neofytos, D., Horn, D., Anaissie, E., (2009). Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin. Infect. Dis. 48:265–273.
  • Nucci, M., Anaissie, E. (2006). Emerging fungi. Infect. Dis. Clin. North Am. 20:563–79.
  • Romani L. (2008). Cell mediated immunity to fungi: a reassessment. Med. Mycol. 46:515–529.
  • Royet, J., Reichhart, J. M., Hoffmann, J. A. (2005). Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17:11–17.
  • Simon, A., Kullberg, B. J., Tripet, B., (2008). Drosomycin-like defensin, a human homologue of Drosophila melanogaster drosomycin with antifungal activity. Antimicrob. Agents Chemother. 52:1407–1412.
  • Spikes, S., Xu, R., Nguyen, C. K., (2008). Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J. Infect. Dis. 197:479–486.
  • Stroschein-Stevenson, S. L., Foley, E., O’Farrell, P. H., Johnson, A. D. (2006). Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 4:e4.
  • Tzou, P., Ohresser, S., Ferrandon, D., (2000). Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:7348.
  • Tzou, P., Reichhart, J. M., Lemaitre, B. (2002). Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl. Acad. Sci. USA 99:2152–2157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.