Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 40, 2011 - Issue 7-8
336
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Host Defenses Against Cryptococcosis

&
Pages 786-808 | Published online: 10 Oct 2011

REFERENCES

  • Abadi, J., Pirofski, L. (1999). Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J. Infect. Dis. 180:915–919.
  • Alcouloumre, M. S., Ghannoum, M. A., Ibrahim, A. S., Selsted, M. E., Edwards, J. E. (1993). Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob. Agents Ch. 37:2628–2632.
  • Bauman, S. K., Huffnagle, G. B., Murphy, J. W. ( 2003). Effects of tumor necrosis factor alpha on dendritic cell accumulation in lymph nodes draining the immunization site and the impact on the anticryptococcal cell-mediated immune response. Infect. Immun. 71:68.
  • Bauman, S. K., Nichols, K. L., Murphy, J. W. (2000). Dendritic cells in the induction of protective and nonprotective anticryptococcal cell-mediated immune responses. J. Immunol. 165:158–167.
  • Bicanic, T., Muzoora, C., Brouwer, A. E., Meintjes, G., Longley, N., Taseera, K., Rebe, K., Loyse, A., Jarvis, J., Bekker, L. G., Wood, R., Limmathurotsakul, D., Chierakul, W., Stepniewska, K., White, N. J., Jaffar, S., Harrison, T. S. (2009). Independent association between rate of clearance of infection and clinical outcome of HIV-associated cryptococcal meningitis: Analysis of a combined cohort of 262 patients. Clin. Infect. Dis. 49:702–709.
  • Blasi, E., Mazzolla, R., Barluzzi, R., Mosci, P., Bistoni, F. (1994). Anticryptococcal resistance in the mouse brain: beneficial effects of local administration of heat-inactivated yeast cells. Infect. Immun. 62:3189–3196.
  • Boulware, D. R., Meya, D. B., Bergemann, T. L., Wiesner, D. L., Rhein, J., Musubire, A., Lee, S. J., Kambugu, A., Janoff, E. N., Bohjanen, P. R. (2010). Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS Med. 7:e1000384.
  • Buchanan, K. L., Doyle, H. A. (2000). Requirement for CD4(+) T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infect. Immun. 68:456–462.
  • Casadevall, A., Perfect, J. R. (1998) Cryptococcus neoformans. ASM Press, Washington, DC.
  • Chayakulkeeree, M., Perfect, J. R. (2006) Cryptococcosis. Infect. Dis. Clin. N. Am. 20:507–544.
  • Chen, G. H., McDonald, R. A., Wells, J. C., Huffnagle, G. B., Lukacs, N. W., Toews, G. B. (2005). The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect. Immun. 73: 1788–1796.
  • Cheng, P.-Y., Sham, A., Kronstad, J. W. (2009) Cryptococcus gattii isolates from the British Columbia cryptococcosis outbreak induce less protective inflammation in a murine model of infection than Cryptococcus neoformans. Infect. Immun. 77:4284–4294.
  • Chuck, S. L., Sande, M. A. (1989). Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. New Engl. J. Med. 321:794–799.
  • Cleare, W., Casadevall, A. (1998). The different binding patterns of two immunoglobulin M monoclonal antibodies to Cryptococcus neoformans serotype A and D strains correlate with serotype classification and differences in functional assays. Clin. Diagn. Lab. Immunol. 5:125–129.
  • Cleare, W., Casadevall, A. (1999). Scanning electron microscopy of encapsulated and non-encapsulated Cryptococcus neoformans and the effect of glucose on capsular polysaccharide release. Med. Mycol. 37:235–243.
  • Cross, C. E., Bancroft, G. J. (1995). Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun. 63:2604–2611.
  • Crowley, M., Inaba, K., Steinman, R. M. (1990). Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins. J. Exp. Med. 172:383–386.
  • Dadachova, E., Nakouzi, A., Bryan, R. A., Casadevall, A. (2003). Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection. Proc. Natl. Acad. Sci. U.S.A. 100:10942–10947.
  • Diamond, R. D., May, J. E., Kane, M., Frank, M. M., Bennett, J. E. (1973). The role of late complement components and the alternate complement pathway in experimental cryptococcosis. Proc. Soc. Exp. Biol. Med. 144:312–315.
  • Diamond, R. D., May, J. E., Kane, M. A., Frank, M. M., Bennett, J. E. (1974). The role of the classical and alternate complement pathways in host defenses against Cryptococcus neoformans infection. J. Immunol. 112:2260–2270.
  • Dromer, F., Aucouturier, P., Clauvel, J. P., Saimot, G., Yeni, P. (1988). Cryptococcus neoformans antibody levels in patients with AIDS. Scand. J. Infect. Dis. 20: 283–285.
  • Duncan, R. A., von Reyn, C. F., Alliegro, G. M., Toossi, Z., Sugar, A. M., Levitz, S. M. (1993). Idiopathic CD4+ T-lymphocytopenia—Four patients with opportunistic infections and no evidence of HIV infection. New Engl. J. Med. 328:393–398.
  • Ecevit, I. Z., Clancy, C. J., Schmalfuss, I. M., Nguyen, M. H. (2006). The poor prognosis of central nervous system cryptococcosis among nonimmunosuppressed patients: a call for better disease recognition and evaluation of adjuncts to antifungal therapy. Clin. Infect. Dis. 42:1443–1447.
  • Einsiedel, L., Gordon, D. L., Dyer, J. R. (2004). Paradoxical inflammatory reaction during treatment of Cryptococcus neoformans var. gattii meningitis in an HIV-seronegative woman. Clin. Infect. Dis. 39:e78–82.
  • Feldmesser, M., Casadevall, A., Kress, Y., Spira, G., Orlofsky, A. (1997). Eosinophil-Cryptococcus neoformans interactions in vivo and in vitro. Infect. Immun. 65: 1899–1907.
  • Fine, D. P., Marney, S. R., Colley, D. G., Sergent, J. S., Des Prez, R. M. (1972). C3 shunt activation in human serum chelated with EGTA. J. Immunol. 109:807–809.
  • Fraser, J., Giles, S., Wenink, E., Geunes-Boyer, S., Wright, J., Diezmann, S., Allen, A., Stajich, J., Dietrich, F., Perfect, J., Heitman, J. (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437:1360–1364.
  • Garcia-Hermoso, D., Janbon, G., Dromer, F. (1999). Epidemiological evidence for dormant Cryptococcus neoformans infection. J. Clin. Microbiol. 37:3204–3209.
  • Gates, M. A., Kozel, T. R. (2006). Differential localization of complement component 3 within the capsular matrix of Cryptococcus neoformans. Infect. Immun. 74:3096–3106.
  • Gates, M. A., Thorkildson, P., Kozel, T. R. (2004). Molecular architecture of the Cryptococcus neoformans capsule. Mol. Microbiol. 52:13–24.
  • Geunes-Boyer, S., Oliver, T. N., Janbon, G., Lodge, J. K., Heitman, J., Perfect, J. R., Wright, J. R. (2009). Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect. Immun. 77:2783–2794.
  • Giles, S. S., Dagenais, T. R., Botts, M. R., Keller, N. P., Hull, C. M. (2009). Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect. Immun. 77:3491–3500.
  • Giles, S. S., Zaas, A. K., Reidy, M. F., Perfect, J. R., Wright, J. R. (2007). Cryptococcus neoformans is resistant to surfactant protein A mediated host defense mechanisms. PLoS ONE 2:e1370.
  • Goldman, D. L., Khine, H., Abadi, J., Lindenberg, D. J., La, P., Niang, R., Casadevall, A. (2001). Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 107:E66.
  • González-Amaro, R., Salazar-González, J. F., Baranda, L., Abud-Mendoza, C., Martínez-Maza, O., Miramontes, M., Moncada, B. (1991). Natural killer cell-mediated cytotoxicity in cryptococcal meningitis. Rev. Invest. Clin. 43:133–138.
  • Gordon, M. A., Casadevall, A. (1995). Serum therapy for cryptococcal meningitis. Clin. Infect. Dis. 21:1477–1479.
  • Goren, M. B., Warren, J. (1968). Immunofluorescence studies of reactions at the cryptococcal capsule. J. Infect. Dis. 118:215–229.
  • Granger, D. L., Perfect, J. R., Durack, D. T. (1986). Macrophage-mediated fungistasis in vitro: requirements for intracellular and extracellular cytotoxicity. J. Immunol. 136:672–680.
  • Granger, D. L., Perfect, J. R., Durack, D. T. (1985). Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J. Clin. Invest. 76:508–516.
  • Graybill, J. R., Drutz, D. J. (1978). Host defense in cryptococcosis. II. Cryptococcosis in the nude mouse. Cell. Immunol. 40:263–274.
  • Grinsell, M., Weinhold, L. C., Cutler, J. E., Han, Y., Kozel, T. R. (2001). In vivo clearance of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans: a critical role for tissue macrophages. J. Infect. Dis. 184:479–487.
  • Guillot, L., Carroll, S. F., Homer, R., Qureshi, S. T. (2008). Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infect. Immun. 76:4745–4756.
  • Hage, C. A., Wood, K. L., Winer-Muram, H. T., Wilson, S. J., Sarosi, G., Knox, K. S. (2003). Pulmonary cryptococcosis after initiation of anti-tumor necrosis factor-alpha therapy. Chest 124:2395–2397.
  • Heitman, J., Kozel, T. R., Kwon-Chung, J., Perfect, J., Casadevall, A. (2011). Cryptococcus: From Human Pathogen to Model Yeast. ASM Press, Washington, DC.
  • Hidore, M. R., Murphy, J. W. (1986a). Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infect. Immun. 51:547–555.
  • Hidore, M. R., Murphy, J. W. (1986b). Natural cellular resistance of beige mice against Cryptococcus neoformans. J. Immunol. 137:3624–3631.
  • Hill, J. O., Harmsen, A. G. (1991). Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J. Exper. Med. 173:755–758.
  • Houpt, D. C., Pfrommer, G. S., Young, B. J., Larson, T. A., Kozel, T. R. (1994). Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect. Immun. 62:2857–2864.
  • Huffnagle, G. B., Boyd, M. B., Street, N. E., Lipscomb, M. F. (1998). IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J. Immunol. 160:2393–2400.
  • Huffnagle, G. B., Lipscomb, M. F., Lovchik, J. A., Hoag, K. A., Street, N. E. (1994). The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukocyte Biol. 55:35–42.
  • Huffnagle, G. B., Yates, J. L., Lipscomb, M. F. (1991a). Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J. Exp. Med. 173:793–800.
  • Huffnagle, G. B., Yates, J. L., Lipscomb, M. F. A. (1991b). T cell-mediated immunity in the lung: A Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect. Immun. 59:1423–1433.
  • Jalali, Z., Ng, L., Singh, N., Pirofski, L.-A. (2006). Antibody response to Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan in patients after solid-organ transplantation. Clin. Vaccine Immunol. 13:740–746.
  • Kauffman, L., Blumer, S. (1977) Proceedings of the Fourth International Conference on the Mycoses, pp. 176–182.
  • Kawakami, K., Kinjo, Y., Uezu, K., Yara, S., Miyagi, K., Koguchi, Y., Nakayama, T., Taniguchi, M., Saito, A. (2001a). Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167:6525–6532.
  • Kawakami, K., Kinjo, Y., Yara, S., Koguchi, Y., Uezu, K., Nakayama, T., Taniguchi, M., Saito, A. (2001b). Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69:213–220.
  • Kelly, R. M., Chen, J., Yauch, L. E., Levitz, S. M. (2005). Opsonic requirements for dendritic cell-mediated responses to Cryptococcus neoformans. Infect. Immun. 73:592–598.
  • Kidd, S., Hagen, F., Tscharke, R., Huynh, M., Bartlett, K., Fyfe, M., Macdougall, L., Boekhout, T., Kwon-Chung, K., Meyer, W. (2004) A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. U.S.A. 101:17258–17263.
  • Kozel, T. R. (1977). Non-encapsulated variant of Cryptococcus neoformans. II. Surface receptors for cryptococcal polysaccharide and their role in inhibition of phagocytosis by polysaccharide. Infect. Immun. 16:99–106.
  • Kozel, T. R., deJong, B. C., Grinsell, M. M., MacGill, R. S., Wall, K. K. (1998). Characterization of anticapsular monoclonal antibodies that regulate activation of the complement system by the Cryptococcus neoformans capsule. Infect. Immun. 66:1538–1546.
  • Kozel, T. R., Gotschlich, E. C. (1982). The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J. Immunol. 129:1675–1680.
  • Kozel, T. R., McGaw, T. G. (1979). Opsonization of Cryptococcus neoformans by human immunoglobulin G: role of immunoglobulin G in phagocytosis by macrophages. Infect. Immun. 25:255–261.
  • Kozel, T. R., Pfrommer, G. S. (1986). Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect. Immun. 52:1–5.
  • Kozel, T. R., Pfrommer, G. S., Guerlain, A. S., Highison, B. A., Highison, G. J. (1988). Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3. Infect. Immun. 56:2794–2800.
  • Kozel, T. R., Weinhold, L. C., Lupan, D. M. (1996). Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect. Immun. 64:3360–3368.
  • Kozel, T. R., Wilson, M. A., Farrell, T. P., Levitz, S. M. (1989). Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect. Immun. 57:3412–3417.
  • Kozel, T. R., Wilson, M. A., Murphy, J. W. ( 1991). Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect. Immun. 59:3101–3110.
  • Kozel, T. R., Wilson, M. A., Pfrommer, G. S., Schlageter, A. M. (1989). Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect. Immun. 57:1922–1927.
  • Larsen, R. A., Pappas, P. G., Perfect, J., Aberg, J. A., Casadevall, A., Cloud, G. A., James, R., Filler, S., Dismukes, W. E. (2005). Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob. Agents Ch. 49:952–958.
  • Levitz, S. M., Dupont, M. P. (1993). Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J. Clin. Invest. 91:1490–1498.
  • Levitz, S. M., Dupont, M. P., Smail, E. H. (1994). Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect. Immun. 62: 194–202.
  • Levitz, S. M., Harrison, T. S., Tabuni, A., Liu, X. (1997). Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J. Clin. Invest. 100:1640.
  • Levitz, S. M., Nong, S., Mansour, M. K., Huang, C., Specht, C. A. (2001). Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proc. Natl. Acad. Sci. U.S.A. 98:10422–10427.
  • Levitz, S. M., North, E. A. (1996). Gamma Interferon gene expression and release in human lymphocytes directly activated by Cryptococcus neoformans and Candida albicans. Infect. Immun. 64:1595–1599.
  • Levitz, S. M., Tabuni, A. (1991). Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J. Clin. Invest. 87:528–535.
  • Levitz, S. M., Tabuni, A., Treseler, C. (1993). Effect of mannose-binding protein on binding of Cryptococcus neoformans to human phagocytes. Infect. Immun. 61:4891–4893.
  • Lipscomb, M. F., Alvarellos, T., Toews, G. B., Tompkins, R., Evans, Z., Koo, G., Kumar, V. (1987). Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice. Am. J. Pathol. 128:354–361.
  • Littman, M. L. (1959). Cryptococcosis (torulosis). Current concepts and therapy. Am. J. Med. 27:976–998.
  • Lortholary, O., Fontanet, A., Mémain, N., Martin, A., Sitbon, K., Dromer, F., Group, F. C. S. (2005). Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIV-associated cryptococcosis in France. AIDS 19: 1043–1049.
  • Lovchik, J. A., Lipscomb, M. F. (1993). Role for C5 and neutrophils in the pulmonary intravascular clearance of circulating Cryptococcus neoformans. Am. J. Respir. Cell Mol. Biol. 9:617–627.
  • Ma, H., Hagen, F., Stekel, D. J., Johnston, S. A., Sionov, E., Falk, R., Polacheck, I., Boekhout, T., May, R. C. (2009). The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc. Natl. Acad. Sci. U.S.A. 106:12980–12985.
  • Ma, L. L., Spurrell, J. C. L., Wang, J. F., Neely, G. G., Epelman, S., Krensky, A. M., Mody, C. H. (2002). CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J. Immunol. 169: 5787–5795.
  • Mambula, S. S., Simons, E. R., Hastey, R., Selsted, M. E., Levitz, S. M. (2000). Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infect. Immun. 68:6257–6264.
  • Mansour, M. K., Latz, E., Levitz, S. M. (2006). Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J. Immunol. 176:3053–3061.
  • Maxson, M., Dadachova, E., Casadevall, A., Zaragoza, O. (2006). Radial mass density, charge, and epitope distribution in the Cryptococcus neoformans capsule. Eukaryot. Cell 6:95–109.
  • McGaw, T. G., Kozel, T. R. (1979). Opsonization of Cryptococcus neoformans by human immunoglobulin G: masking of immunoglobulin G by cryptococcal polysaccharide. Infect. Immun. 25:262–267.
  • Means, T. K., Mylonakis, E., Tampakakis, E., Colvin, R. A., Seung, E., Puckett, L., Tai, M. F., Stewart, C. R., Pukkila-Worley, R., Hickman, S. E., Moore, K. J., Calderwood, S. B., Hacohen, N., Luster, A. D., el Khoury, J. B. (2009). Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206:637–653.
  • Meletiadis, J., Walsh, T. J., Choi, E. H., Pappas, P. G., Ennis, D., Douglas, J., Pankey, G. A., Larsen, R. A., Hamill, R. J., Chanock, S. (2007). Study of common functional genetic polymorphisms of FCGR2A, 3A and 3B genes and the risk for cryptococcosis in HIV-uninfected patients. Med. Mycol. 45:513–518.
  • Mershon, K. L., Vasuthasawat, A., Lawson, G. W., Morrison, S. L., Beenhouwer, D. O. (2009). Role of complement in protection against Cryptococcus gattii infection. Infect. Immun. 77:1061–1070.
  • Miller, M. F., Mitchell, T. G., Storkus, W. J., Dawson, J. R. (1990). Human natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody. Infect. Immun. 58:639.
  • Mody, C. H., Chen, G. H., Jackson, C., Curtis, J. L., Toews, G. B. (1993). Depletion of murine CD8+ T cells in vivo decreases pulmonary clearance of a moderately virulent strain of Cryptococcus neoformans. J. Lab. Clin. Med. 121:765–773.
  • Mody, C. H., Chen, G. H., Jackson, C., Curtis, J. L., Toews, G. B. (1994) In vivo depletion of murine CD8 positive T cells impairs survival during infection with a highly virulent strain of Cryptococcus neoformans. Mycopathologia 125:7–17.
  • Mody, C. H., Wood, C. J., Syme, R. M., Spurrell, J. C. L. (1999). The cell wall and membrane of Cryptococcus neoformans possess a mitogen for human T lymphocytes. Infect. Immun. 67:936.
  • Monari, C., Casadevall, A., Retini, C., Baldelli, F., Bistoni, F., Vecchiarelli, A. (1999). Antibody to capsular polysaccharide enhances the function of neutrophils from patients with AIDS against Cryptococcus neoformans. AIDS 13: 653.
  • Monga, D. P., Kumar, R., Mohapatra, L. N., Malaviya, A. N. (1979). Experimental cryptococcosis in normal and B-cell-deficient mice. Infect. Immun. 26:1–3.
  • Mozaffarian, N., Berman, J. W., Casadevall, A. (1995). Immune complexes increase nitric oxide production by interferon-gamma- stimulated murine macrophage-like J774.16 cells. J. Leukocyte Biol. 57:657–662.
  • Mukherjee, J., Nussbaum, G., Scharff, M. D., Casadevall, A. (1995). Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J. Exp. Med. 181:405–409.
  • Murphy, J. W., Hidore, M. R., Wong, S. C. (1993). Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J. Clin. Invest. 91:1553–1566.
  • Murphy, J. W., McDaniel, D. O. (1982). In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans. J. Immunol. 128:1577–1583.
  • Nabavi, N., Murphy, J. W. (1985). In vitro binding of natural killer cells to Cryptococcus neoformans targets. Infect. Immun. 50:50–57.
  • Nakouzi, A., Valadon, P., Nosanchuk, J., Green, N., Casadevall, A. (2001). Molecular basis for immunoglobulin M specificity to epitopes in Cryptococcus neoformans polysaccharide that elicit protective and nonprotective antibodies. Infect. Immun. 69:3398–3409.
  • Orendi, J. M., Nottet, H. S., Visser, M. R., Verheul, A. F., Snippe, H., Verhoef, J. (1994). Enhancement of HIV-1 replication in peripheral blood mononuclear cells by Cryptococcus neoformans is monocyte-dependent but tumour necrosis factor-independent. AIDS 8:423–429.
  • Pappas, P. G., Bustamante, B., Ticona, E., Hamill, R. J., Johnson, P. C., Reboli, A., Aberg, J., Hasbun, R., Hsu, H. H. (2004). Recombinant interferon- gamma 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J. Infect. Dis. 189: 2185–2191.
  • Park, B. J., Wannemuehler, K. A., Marston, B. J., Govender, N., Pappas, P. G., Chiller, T. M. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530.
  • Pettoello-Mantovani, M., Casadevall, A., Kollmann, T. R., Rubinstein, A., Goldstein, H. (1992). Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet 339:21–23.
  • Pfrommer, G. S., Dickens, S. M., Wilson, M. A., Young, B. J., Kozel, T. R. (1993). Accelerated decay of C3b to iC3b when C3b is bound to the Cryptococcus neoformans capsule. Infect. Immun. 61:4360–4366.
  • Pierini, L. M., Doering, T. L. (2001). Spatial and temporal sequence of capsule construction in Cryptococcus neoformans. Mol. Microbiol. 41:105–115.
  • Pietrella, D., Corbucci, C., Perito, S., Bistoni, G., Vecchiarelli, A. (2005). Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73:820–827.
  • Rachini, A., Pietrella, D., Lupo, P., Torosantucci, A., Chiani, P., Bromuro, C., Proietti, C., Bistoni, F., Cassone, A., Vecchiarelli, A. (2007). An anti-beta-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformans in vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect. Immun. 75: 5085–5094.
  • Rivera, J., Zaragoza, O., Casadevall, A. (2005). Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infect. Immun. 73:1141–1150.
  • Salkowski, C. A., Balish, E. (1991). Role of natural killer cells in resistance to systemic cryptococcosis. J. Leukocyte Biol. 50:151–159.
  • Salmon-Ceron, D., Tubach, F., Lortholary, O., Chosidow, O., Bretagne, S., Nicolas, N., Cuillerier, E., Fautrel, B., Michelet, C., Morel, J., Puechal, X., Wendling, D., Lemann, M., Ravaud, P., Mariette, X. (2011). Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry. Ann. Rheum. Dis. 70:616–623.
  • Schelenz, S., Malhotra, R., Sim, R. B., Holmskov, U., Bancroft, G. J. (1995). Binding of host collectins to the pathogenic yeast Cryptococcus neoformans: human surfactant protein D acts as an agglutinin for acapsular yeast cells. Infect. Immun. 63: 3360–3366.
  • Schlageter, A. M., Kozel, T. R. (1990). Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. Infect. Immun. 58:1914–1918.
  • Shapiro, L. L., Neal, J. B. (1925). Torula meningitis. Arch. Neurol. Psych. 13:174.
  • Shapiro, S., Beenhouwer, D. O., Feldmesser, M., Taborda, C. P., Carroll, M. C., Casadevall, A., Scharff, M. D. (2002). Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protect mice deficient in complement component C3. Infect. Immun. 70:2598–2604.
  • Shelburne, S. A., 3rd, Darcourt, J., White, A. C., Jr., Greenberg, S. B., Hamill, R. J., Atmar, R. L., Visnegarwala, F. (2005). The role of immune reconstitution inflammatory syndrome in AIDS-related Cryptococcus neoformans disease in the era of highly active antiretroviral therapy. Clin. Infect. Dis. 40:1049–1052.
  • Shoham, S., Huang, C., Chen, J. M., Golenbock, D. T., Levitz, S. M. (2001). Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166: 4620–4626.
  • Siddiqui, A. A., Brouwer, A. E., Wuthiekanun, V., Jaffar, S., Shattock, R., Irving, D., Sheldon, J., Chierakul, W., Peacock, S., Day, N., White, N. J., Harrison, T. S. (2005). IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J. Immunol. 174:1746–1750.
  • Singh, N., Dromer, F., Perfect, J. R., Lortholary, O. (2008). Cryptococcosis in solid organ transplant recipients: current state of the science. Clin. Infect. Dis. 47:1321–1327.
  • Singh, N., Lortholary, O., Alexander, B. D., Gupta, K. L., John, G. T., Pursell, K., Munoz, P., Klintmalm, G. B., Stosor, V., del Busto, R., Limaye, A. P., Somani, J., Lyon, M., Houston, S., House, A. A., Pruett, T. L., Orloff, S., Humar, A., Dowdy, L., Garcia-Diaz, J., Kalil, A. C., Fisher, R. A., Husain, S., Group C. C. T. S. (2005). An immune reconstitution syndrome-like illness associated with Cryptococcus neoformans infection in organ transplant recipients. Clin. Infect. Dis. 40:1756–1761.
  • Singh, N., Perfect, J. R. (2007). Immune reconstitution syndrome associated with opportunistic mycoses. Lancet Infect. Dis. 7:395–401.
  • Spitzer, E. D., Spitzer, S. G., Freundlich, L. F., Casadevall, A. (1993). Persistence of initial infection in recurrent Cryptococcus neoformans meningitis. Lancet 341: 595–596.
  • Subramaniam, K., French, N., Pirofski, L.-A. (2005). Cryptococcus neoformans-reactive and total immunoglobulin profiles of human immunodeficiency virus-infected and uninfected Ugandans. Clin. Diagn. Lab. Immunol. 12:1168–1176.
  • Subramaniam, K., Metzger, B., Hanau, L. H., Guh, A., Rucker, L., Badri, S., Pirofski, L.-A. (2009). IgM(+) memory B cell expression predicts HIV-associated cryptococcosis status. J. Infect. Dis. 200:244–251.
  • Syme, R. M., Spurrell, J. C., Ma, L. L., Green, F. H., Mody, C. H. (2000). Phagocytosis and protein processing are required for presentation of Cryptococcus neoformans mitogen to T lymphocytes. Infect. Immun. 68:6147–6153.
  • Syme, R. M., Spurrell, J. C. L., Amankwah, E. K., Green, F. H. Y., Mody, C. H. (2002). Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect. Immun. 70:5972–5981.
  • Taber, K. (1937). Torulosis in man. J. Amer. Med. Assoc. 108:1405–1406.
  • Takeo, K., Uesaka, I., Uehira, K., Nishiura, M. (1973). Fine structure of Cryptococcus neoformans grown in vivo as observed by freeze-etching. J. Bacteriol. 113:1449–1454.
  • Tucker, S. C., Casadevall, A. (2002). Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 99:3165–3170.
  • Tydell, C. C., Yount, N., Tran, D., Yuan, J., Selsted, M. E. (2002). Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J. Biol. Chem. 277:19658–19664.
  • van Asbeck, E. C., Hoepelman, A. I. M., Scharringa, J., Herpers, B. L., Verhoef, J. (2008). Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol. 8:229.
  • Vecchiarelli, A. (2005). The cellular responses induced by the capsular polysaccharide of Cryptococcus neoformans differ depending on the presence or absence of specific protective antibodies. Curr. Mol. Med. 5:413–420.
  • Vecchiarelli, A., Pietrella, D., Bistoni, F., Kozel, T. R., Casadevall, A. (2002). Antibody to Cryptococcus neoformans capsular glucuronoxylomannan promotes expression of interleukin-12Rbeta2 subunit on human T cells in vitro through effects mediated by antigen-presenting cells. Immunology 106:267–272.
  • Vecchiarelli, A., Retini, C., Monari, C., Casadevall, A. (1998). Specific antibody to Cryptococcus neoformans alters human leukocyte cytokine synthesis and promotes T-cell proliferation. Infect. Immun. 66:1244–1247.
  • Velagapudi, R., Hsueh, Y. P., Geunes-Boyer, S., Wright, J. R., Heitman, J. (2009). Spores as infectious propagules of Cryptococcus neoformans. Infect. Immun. 77: 4345–4355.
  • Wilson, M. A., Kozel, T. R. (1992). Contribution of antibody in normal human serum to early deposition of C3 onto encapsulated and nonencapsulated Cryptococcus neoformans. Infect. Immun. 60:754–761.
  • Wormley, F. L., Perfect, J. R., Steele, C., Cox, G. M. (2007). Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect. Immun. 75:1453–1462.
  • Wozniak, K., Hardison, S., Kolls, J., Wormley, Jr., F. (2011). Role of IL-17A on Resolution of Pulmonary C. neoformans Infection. PLoS ONE 6:e17204.
  • Wozniak, K. L., Ravi, S., Macias, S., Young, M. L., Olszewski, M. A., Steele, C., Wormley, F. L. (2009). Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS ONE 4:e6854.
  • Wozniak, K. L., Vyas, J. M., Levitz, S. M. (2006). In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect. Immun. 74:3817–3824.
  • Young, B. J., Kozel, T. R. (1993). Effects of strain variation, serotype, and structural modification on kinetics for activation and binding of C3 to Cryptococcus neoformans. Infect. Immun. 61:2966–2972.
  • Zaragoza, O., Casadevall, A. (2006). Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell. Microbiol. 8:1862–1876.
  • Zaragoza, O., Taborda, C. P., Casadevall, A. (2003).The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur. J. Immunol. 33:1957–1967.
  • Zhang, Y., Wang, F., Tompkins, K. C., McNamara, A., Jain, A. V., Moore, B. B., Toews, G. B., Huffnagle, G. B., Olszewski, M. A. (2009). Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am. J. Pathol. 175:2489–2500.
  • Zheng, C. F., Jones, G. J., Shi, M., Wiseman, J. C. D., Marr, K. J., Berenger, B. M., Huston, S. M., Gill, M. J., Krensky, A. M., Kubes, P., Mody, C. H. (2008). Late expression of granulysin by microbicidal CD4+ T cells requires PI3K- and STAT5-dependent expression of IL-2Rbeta that is defective in HIV-infected patients. J. Immunol. 180:7221–7229.
  • Zheng, C. F., Ma, L. L., Jones, G. J., Gill, M. J., Krensky, A. M., Kubes, P., Mody, C. H. (2007). Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood 109:2049–2057.
  • Zhong, Z., Pirofski, L. A. (1996). Opsonization of Cryptococcus neoformans by human anticryptococcal glucuronoxylomannan antibodies. Infect. Immun. 64:3446–3450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.