Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 40, 2011 - Issue 7-8
169
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Immunomodulatory Properties of Antifungal Agents on Phagocytic Cells

, , MD &
Pages 809-824 | Published online: 10 Oct 2011

REFERENCES

  • Anderson, J. B. (2005). Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat. Rev. Microbiol. 3(7):547–556.
  • Antachopoulos, C., Roilides, E. (2005). Cytokines and fungal infections. Br. J. Haematol. 129(5):583–596.
  • Ballesta, S., Garcia, I., Perea, E. J., Pascual, A. (2005). Uptake and intracellular activity of voriconazole in human polymorphonuclear leucocytes. J. Antimicrob. Chemother. 55(5):785–787.
  • Baltch, A. L., Bopp, L. H., Smith, R. P., Ritz, W. J., Carlyn, C. J., Michelsen, P. B. (2005). Effects of voriconazole, granulocyte-macrophage colony-stimulating factor, and interferon gamma on intracellular fluconazole-resistant Candida glabrata and Candida krusei in human monocyte-derived macrophages. Diagn. Microbiol. Infect. Dis. 52(4):299–304.
  • Baltch, A. L., Bopp, L. H., Smith, R. P., Ritz, W. J., Michelsen, P. B. (2008). Anticandidal effects of voriconazole and caspofungin, singly and in combination, against Candida glabrata, extracellularly and intracellularly in granulocyte-macrophage colony stimulating factor (GM-CSF)-activated human monocytes. J. Antimicrob. Chemother. 62(6):1285–1290.
  • Bellocchio, S., Gaziano, R., Bozza, S., Rossi, G., Montagnoli, C., Perruccio, K., Calvitti, M., Pitzurra, L., Romani, L. (2005). Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J. Antimicrob. Chemother. 55(2):214–222.
  • Blanco, J. L., Garcia, M. E. (2008). Immune response to fungal infections. Vet. Immunol. Immunopathol. 125(1–2):47–70.
  • Bopp, L. H., Baltch, A. L., Ritz, W. J., Michelsen, P. B., Smith, R. P. (2006). Antifungal effect of voriconazole on intracellular Candida glabrata, Candida krusei and Candida parapsilosis in human monocyte-derived macrophages. J. Med. Microbiol. 55(Pt 7):865–870.
  • Chiller, T., Farrokhshad, K., Brummer, E., Stevens, D. A. (2002). Effect of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on polymorphonuclear neutrophils, monocytes or monocyte-derived macrophages combined with voriconazole against Cryptococcus neoformans. Med. Mycol. 40(1): 21–26.
  • Choi, J. H., Brummer, E., Stevens, D. A. (2004). Combined action of micafungin, a new echinocandin, and human phagocytes for antifungal activity against Aspergillus fumigatus. Microbes Infect. 6(4):383–389.
  • Choi, J. H., Kwon, E. Y., Park, C. M., Choi, S. M., Lee, D. G., Yoo, J. H., Shin, W. S. and Stevens, D. A. (2010). Immunomodulatory effects of antifungal agents on the response of human monocytic cells to Aspergillus fumigatus conidia. Med. Mycol. 48(5):704–709.
  • Cleary, J. D., Rogers, P. D., Chapman, S. W. (2001). Differential transcription factor expression in human mononuclear cells in response to amphotericin B: identification with complementary DNA microarray technology. Pharmacotherapy 21(9):1046–1054.
  • Dotis, J., Simitsopoulou, M., Dalakiouridou, M., Konstantinou, T., Panteliadis, C., Walsh, T. J., Roilides, E. (2008). Amphotericin B formulations variably enhance antifungal activity of human neutrophils and monocytes against Fusarium solani: comparison with Aspergillus fumigatus. J. Antimicrob. Chemother. 61(4):810–817.
  • Dotis, J., Simitsopoulou, M., Dalakiouridou, M., Konstantinou, T., Taparkou, A., Kanakoudi-Tsakalidou, F., Walsh, T. J., Roilides, E. (2006). Effects of lipid formulations of amphotericin B on activity of human monocytes against Aspergillus fumigatus. Antimicrob. Agents Chemother. 50(3):868–873.
  • Ellis, M. (2000). Amphotericin B preparations: a maximum tolerated dose in severe invasive fungal infections? Transpl. Infect. Dis. 2(2):51–61.
  • Frank, U., Greiner, M., Engels, I., Daschner, F. D. (2004). Effects of caspofungin (MK-0991) and anidulafungin (LY303366) on phagocytosis, oxidative burst and killing of Candida albicans by human phagocytes. Eur. J. Clin. Microbiol. Infect. Dis. 23(9):729–731.
  • Gallagher, J. C., MacDougall, C., Ashley, E. S., Perfect, J. R. (2004). Recent advances in antifungal pharmacotherapy for invasive fungal infections. Expert. Rev. Anti-Infect. Ther. 2(2):253–268.
  • Gil-Lamaignere, C., Roilides, E., Maloukou, A., Georgopoulou, I., Petrikkos, G., Walsh, T. J. (2002). Amphotericin B lipid complex exerts additive antifungal activity in combination with polymorphonuclear leucocytes against Scedosporium prolificans and Scedosporium apiospermum. J. Antimicrob. Chemother. 50(6):1027–1030.
  • Graybill, J. R., Bocanegra, R., Luther, M. (1995). Antifungal combination therapy with granulocyte colony-stimulating factor and fluconazole in experimental disseminated candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 14(8):700–703.
  • Graybill, J. R., Bocanegra, R., Najvar, L. K., Loebenberg, D., Luther, M. F. (1998). Granulocyte colony-stimulating factor and azole antifungal therapy in murine aspergillosis: role of immune suppression. Antimicrob. Agents Chemother. 42(10):2467–2473.
  • Hamad, M. (2008). Antifungal immunotherapy and immunomodulation: a double-hitter approach to deal with invasive fungal infections. Scand. J. Immunol. 67(6):533–543.
  • Herrmann, J. L., Dubois, N., Fourgeaud, M., Basset, D., Lagrange, P. H. (1994). Synergic inhibitory activity of amphotericin-B and gamma interferon against intracellular Cryptococcus neoformans in murine macrophages. J. Antimicrob. Chemother. 34(6):1051–1058.
  • Hiemenz, J. W., Walsh, T. J. (1996). Lipid formulations of amphotericin B: recent progress and future directions. Clin. Infect. Dis. 22 Suppl 2:S133–144.
  • Hohl, T. M., Feldmesser, M., Perlin, D. S., Pamer, E. G. (2008). Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J. Infect. Dis. 198(2):176–185.
  • Jahn, B., Rampp, A., Dick, C., Jahn, A., Palmer, M., Bhakdi, S. (1998). Accumulation of amphotericin B in human macrophages enhances activity against Aspergillus fumigatus conidia: quantification of conidial kill at the single-cell level. Antimicrob. Agents Chemother. 42(10):2569–2575.
  • Janes, M. R., Fruman, D. A. (2009). Immune regulation by rapamycin: moving beyond T cells. Sci. Signal 2(67):pe25.
  • Kimberg, M., Brown, G. D. (2008). Dectin-1 and its role in antifungal immunity. Med. Mycol. 46(7):631–636.
  • Lamaris, G. A., Lewis, R. E., Chamilos, G., May, G. S., Safdar, A., Walsh, T. J., Raad II, J., Kontoyiannis, D. P. (2008). Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J. Infect. Dis. 198(2):186–192.
  • Laniado-Laborin, R. and Cabrales-Vargas, M. N. (2009). Amphotericin B: side effects and toxicity. Rev. Iberoam. Micol. 26(4):223–227.
  • Martin, E., Stuben, A., Gorz, A., Weller, U., Bhakdi, S. (1994). Novel aspect of amphotericin B action: accumulation in human monocytes potentiates killing of phagocytosed Candida albicans. Antimicrob. Agents Chemother. 38(1):13–22.
  • Matsuo, K., Hotokezaka, H., Ohara, N., Fujimura, Y., Yoshimura, A., Okada, Y., Hara, Y., Yoshida, N., Nakayama, K. (2006). Analysis of amphotericin B-induced cell signaling with chemical inhibitors of signaling molecules. Microbiol. Immunol. 50(4):337–347.
  • Mencacci, A., Cenci, E., Bacci, A., Bistoni, F., Romani, L. (2000). Host immune reactivity determines the efficacy of combination immunotherapy and antifungal chemotherapy in candidiasis. J. Infect. Dis. 181(2):686–694.
  • Morschhauser, J. (2010). Regulation of multidrug resistance in pathogenic fungi. Fungal Genet. Biol. 47(2):94–106.
  • Murphy, E. A., Davis, J. M., Carmichael, M. D. (2010). Immune modulating effects of beta-glucan. Curr. Opin. Clin. Nutr. Metab. Care 13(6):656–661.
  • Netea, M. G., Van der Meer, J. W., Kullberg, B. J. (2006). Role of the dual interaction of fungal pathogens with pattern recognition receptors in the activation and modulation of host defence. Clin. Microbiol. Infect. 12(5):404–409.
  • Pascual, A., Garcia, I., Conejo, C., Perea, E. J. (1993). Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 37(2):187–190.
  • Patera, A. C., Menzel, F., Jackson, C., Brieland, J. K., Halpern, J., Hare, R., Cacciapuoti, A., Loebenberg, D. (2004). Effect of granulocyte colony-stimulating factor combination therapy on efficacy of posaconazole (SCH56592) in an inhalation model of murine pulmonary aspergillosis. Antimicrob. Agents Chemother. 48(8):3154–3158.
  • Razonable, R. R., Henault, M., Lee, L. N., Laethem, C., Johnston, P. A., Watson, H. L., Paya, C. V. (2005). Secretion of proinflammatory cytokines and chemokines during amphotericin B exposure is mediated by coactivation of toll-like receptors 1 and 2. Antimicrob. Agents Chemother. 49(4):1617–1621.
  • Rodriguez, M. M., Pastor, F. J., Calvo, E., Salas, V., Sutton, D. A., Guarro, J. (2009). Correlation of in vitro activity, serum levels, and in vivo efficacy of posaconazole against Rhizopus microsporus in a murine disseminated infection. Antimicrob. Agents Chemother. 53(12):5022–5025.
  • Rogers, P. D., Jenkins, J. K., Chapman, S. W., Ndebele, K., Chapman, B. A., Cleary, J. D. (1998). Amphotericin B activation of human genes encoding for cytokines. J. Infect. Dis. 178(6):1726–1733.
  • Rogers, P. D., Kramer, R. E., Chapman, S. W., Cleary, J. D. (1999). Amphotericin B-induced interleukin-1beta expression in human monocytic cells is calcium and calmodulin dependent. J. Infect. Dis. 180(4):1259–1266.
  • Rogers, P. D., Pearson, M. M., Cleary, J. D., Sullivan, D. C., Chapman, S. W. (2002). “Differential expression of genes encoding immunomodulatory proteins in response to amphotericin B in human mononuclear cells identified by cDNA microarray analysis. J. Antimicrob. Chemother. 50(6):811–817.
  • Rogers, P. D., Stiles, J. K., Chapman, S. W., Cleary, J. D. (2000). Amphotericin B induces expression of genes encoding chemokines and cell adhesion molecules in the human monocytic cell line THP-1. J. Infect. Dis. 182(4):1280–1283.
  • Roilides, E., Lyman, C. A., Filioti, J., Akpogheneta, O., Sein, T., Lamaignere, C. G., Petraitiene, R., Walsh, T. J. (2002). Amphotericin B formulations exert additive antifungal activity in combination with pulmonary alveolar macrophages and polymorphonuclear leukocytes against Aspergillus fumigatus. Antimicrob. Agents Chemother. 46(6):1974–1976.
  • Roilides, E., Lyman, C. A., Panagopoulou, P., Chanock, S. (2003). Immunomodulation of invasive fungal infections. Infect. Dis. Clin. North Am. 17(1):193–219.
  • Roilides, E., Walsh, T. (2004). Recombinant cytokines in augmentation and immunomodulation of host defenses against Candida spp. Med. Mycol. 42(1):1–13.
  • Romani, L. (2004). Immunity to fungal infections. Nat. Rev. Immunol. 4(1):1–23.
  • Safdar, A., Shelburne, S. A., Evans, S. E., Dickey, B. F. (2009). Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin. Drug Saf. 8(4):435–449.
  • Salvenmoser, S., Seidler, M. J., Dalpke, A., Muller, F. M. (2010). Effects of caspofungin, Candida albicans and Aspergillus fumigatus on toll-like receptor 9 of GM-CSF-stimulated PMNs. FEMS Immunol. Med. Microbiol. 60(1):74–77.
  • Sau, K., Mambula, S. S., Latz, E., Henneke, P., Golenbock, D. T., Levitz, S. M. (2003). The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J. Biol. Chem. 278(39):37561–37568.
  • Saxena, S., Bhatnagar, P. K., Ghosh, P. C., Sarma, P. U. (1999). Effect of amphotericin B lipid formulation on immune response in aspergillosis. Int. J. Pharm. 188(1):19–30.
  • Simitsopoulou, M., Gil-Lamaignere, C., Avramidis, N., Maloukou, A., Lekkas, S., Havlova, E., Kourounaki, L., Loebenberg, D., Roilides, E. (2004). Antifungal activities of posaconazole and granulocyte-macrophage colony-stimulating factor ex vivo and in mice with disseminated infection due to Scedosporium prolificans. Antimicrob. Agents Chemother. 48(10):3801–3805.
  • Simitsopoulou, M., Roilides, E., Dotis, J., Dalakiouridou, M., Dudkova, F., Andreadou, E., Walsh, T. J. (2005). Differential expression of cytokines and chemokines in human monocytes induced by lipid formulations of amphotericin B. Antimicrob Agents Chemother. 49(4):1397–1403.
  • Simitsopoulou, M., Roilides, E., Georgiadou, E., Paliogianni, F., Walsh, T. J. (2011). “Differential transcriptional profiles induced by amphotericin B formulations on human monocytes during response to hyphae of Aspergillus fumigatus. Med. Mycol. 49(2):176–185.
  • Simitsopoulou, M., Roilides, E., Maloukou, A., Gil-Lamaignere, C., Walsh, T. J. (2008a). “Interaction of amphotericin B lipid formulations and triazoles with human polymorphonuclear leucocytes for antifungal activity against Zygomycetes. Mycoses 51(2):147–154.
  • Simitsopoulou, M., Roilides, E., Paliogianni, F., Likartsis, C., Ioannidis, J., Kanellou, K., Walsh, T. J. (2008b). Immunomodulatory effects of voriconazole on monocytes challenged with Aspergillus fumigatus: differential role of Toll-like receptors. Antimicrob. Agents Chemother. 52(9):3301–3306.
  • Sorrell, T. C., Chen, S. C. (2009). Fungal-derived immune modulating molecules. Adv. Exp. Med. Biol. 666:108–120.
  • Steinbach, W. J., Stevens, D. A. (2003). Review of newer antifungal and immunomodulatory strategies for invasive Aspergillosis. Clin. Infect. Dis. 37 Suppl 3: S157–187.
  • Stevens, D. A., Kullberg, B. J., Brummer, E., Casadevall, A., Netea, M. G., Sugar, A. M. (2000). Combined treatment: antifungal drugs with antibodies, cytokines or drugs. Med. Mycol. 38 Suppl 1:305–315.
  • Swenson, C. E., Perkins, W. R., Roberts, P., Ahmad, I., Stevens, R., Stevens, D. A., Janoff, A. S. (1998). In vitro and in vivo antifungal activity of amphotericin B lipid complex: are phospholipases important? Antimicrob. Agents Chemother. 42(4):767–771.
  • Tohyama, M., Kawakami, K., Saito, A. (1996). Anticryptococcal effect of amphotericin B is mediated through macrophage production of nitric oxide. Antimicrob. Agents Chemother. 40(8):1919–1923.
  • Turtinen, L. W., Bremer, L. A., Prall, D. N., Schwartzhoff, J., Hartsel, S. C. (2005). Distinct cytokine release profiles from human endothelial and THP-1 macrophage-like cells exposed to different amphotericin B formulations. Immunopharmacol. Immunotoxicol. 27(1):85–93.
  • Turtinen, L. W., Croswell, A., Obr, A. (2008). Microarray analysis of amphotericin B-treated THP-1 monocytic cells identifies unique gene expression profiles among lipid and non-lipid drug formulations. J. Chemother. 20(3):327–335.
  • Turtinen, L. W., Prall, D. N., Bremer, L. A., Nauss, R. E., Hartsel, S. C. (2004). Antibody array-generated profiles of cytokine release from THP-1 leukemic monocytes exposed to different amphotericin B formulations. Antimicrob. Agents Chemother. 48(2):396–403.
  • Vautier, S., Sousa Mda, G., Brown, G. D. (2010). C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev. 21(6):405–412.
  • Villar, C. C., Dongari-Bagtzoglou, A. (2008). Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Expert Rev. Mol. Med. 10:e29.
  • Vora, S., Chauhan, S., Brummer, E., Stevens, D. A. (1998). Activity of voriconazole combined with neutrophils or monocytes against Aspergillus fumigatus: effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Antimicrob Agents Chemother 42(9):2299–2303.
  • Wellington, M., Dolan, K., Krysan, D. J. (2009). Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect. Immun. 77(1):405–413.
  • Wheeler, R. T., Kombe, D., Agarwala, S. D., Fink, G. R. (2008). Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 4(12):e1000227.
  • Willment, J. A., Brown, G. D. (2008). C-type lectin receptors in antifungal immunity. Trends Microbiol. 16(1):27–32.
  • Yamamoto, M., Takeda, K. (2010). Current views of toll-like receptor signaling pathways. Gastroenterol. Res. Pract. 2010:240–365.
  • Zelante, T., Bozza, S., De Luca, A., D’Angelo, C., Bonifazi, P., Moretti, S., Giovannini, G., Bistoni, F. and Romani, L. (2009). Th17 cells in the setting of Aspergillus infection and pathology. Med. Mycol. 47 Suppl 1:S162–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.