Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 42, 2013 - Issue 7
209
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Bacteria take control of tolls and T cells to destruct jaw bone

, &
Pages 519-531 | Published online: 05 Sep 2013

References

  • Adamowicz K, Wang H, Jotwani R, et al. (2012). Inhibition of GSK3 abolishes bacterial-induced periodontal bone loss in mice. Mol Med, 18, 1190–6
  • Akira S, Takeda K. (2004). Toll-like receptor signalling. Nat Rev Immunol, 4, 499–511
  • Amcheslavsky A, Bar-Shavit Z. (2006). Interleukin (IL)-12 mediates the anti-osteoclastogenic activity of CpG-oligodeoxynucleotides. J Cell Physiol, 207, 244–50
  • Arizon M, Nudel I, Segev H, et al. (2012). Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc Natl Acad Sci, 109, 7043–7048
  • Azarpazhooh A, Leake JL. (2006). Systematic review of the association between respiratory diseases and oral health. J Periodontol, 77, 1465–82
  • Baker PJ. (2000). The role of immune responses in bone loss during periodontal disease. Microbes Infect, 2, 1181–92
  • Baker PJ, Dixon M, Evans RT, et al. (1999). CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun, 67, 2804–9
  • Baker PJ, Evans RT, Roopenian DC. (1994). Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Arch Oral Biol, 39, 1035–40
  • Bar-Shavit Z. (2008). Taking a Toll on the bones: Regulation of bone metabolism by innate immune regulators. Autoimmunity, 41, 195–203
  • Beck J, Garcia R, Heiss G, et al. (1996). Periodontal disease and cardiovascular disease. J Periodontol, 67, 1123–37
  • Beck JD, Offenbacher S. (2005). Systemic effects of periodontitis: Epidemiology of periodontal disease and cardiovascular disease. J Periodontol, 76, 2089–100
  • Brennan RM, Genco RJ, Wilding GE, et al. (2007). Bacterial species in subgingival plaque and oral bone loss in postmenopausal women. J Periodontol, 78, 1051–61
  • Burns E, Bachrach G, Shapira L, Nussbaum G. (2006). Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis: Activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J Immunol, 177, 8296–300
  • Costalonga M, Batas L, Reich BJ. (2009). Effects of Toll-like receptor 4 on Porphyromonas gingivalis-induced bone loss in mice. J Periodontal Res, 44, 537–42
  • Ducy P, Schinke T, Karsenty G. (2000). The osteoblast: A sophisticated fibroblast under central surveillance. Science, 289, 1501–4
  • Eastcott JW, Yamashita K, Taubman MA, et al. (1994). Adoptive transfer of cloned T helper cells ameliorates periodontal disease in nude rats. Oral Microbiol Immunol, 9, 284–9
  • Eskan MA, Jotwani R, Abe T, et al. (2012). The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol, 13, 465–73
  • Fowler EB, Breault LG, Cuenin MF. (2001). Periodontal disease and its association with systemic disease. Mil Med, 166, 85–9
  • Fujihashi K, Yamamoto M, Hiroi T, et al. (1996). Selected Th1 and Th2 cytokine mRNA expression by CD4(+) T cells isolated from inflamed human gingival tissues. Clin Exp Immunol, 103, 422–8
  • Fukui A, Ohta K, Nishi H, et al. (2013). Interleukin-8 and CXCL10 expression in oral keratinocytes and fibroblasts via Toll-like receptors. Microbiol Immunol, 57, 198–206
  • Gaddis DE, Maynard CL, Weaver CT, et al. (2013). Role of TLR2-dependent IL-10 production in the inhibition of the initial IFN-gamma T cell response to Porphyromonas gingivalis. J Leukoc Biol, 93, 21–31
  • Gaffen SL, Hajishengallis G. (2008). A new inflammatory cytokine on the block: Re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res, 87, 817–28
  • Gaffen SL, Kramer JM, Yu JJ, Shen F. (2006). The IL-17 cytokine family. Vitam Horm, 74, 255–82
  • Gemmell E, Seymour GJ. (2000). Immunoregulatory control of Th1/Th2 cytokine profiles in periodontal disease. Periodontol, 35, 21–41
  • Gemmell E, Yamazaki K, Seymour GJ. (2002). Destructive periodontitis lesions are determined by the nature of the lymphocytic response. Crit Rev Oral Biol Med, 13, 17–34
  • Gibson FC 3rd, Genco CA. (2007). Porphyromonas gingivalis mediated periodontal disease and atherosclerosis: Disparate diseases with commonalities in pathogenesis through TLRs. Curr Pharm Des, 13, 3665–75
  • Goriely S, Neurath MF, Goldman M. (2008). How microorganisms tip the balance between interleukin-12 family members. Nat Rev Immunol, 8, 81–6
  • Grossi SG, Genco RJ, Machtei EE, et al. (1995). Assessment of risk for periodontal disease. II. Risk indicators for alveolar bone loss. J Periodontol, 66, 23–9
  • Grossi SG, Zambon JJ, Ho AW, et al. (1994). Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol, 65, 260–7
  • Gmur R, Strub JR, Guggenheim B. (1989). Prevalence of Bacteroides forsythus and Bacteroides gingivalis in subgingival plaque of prosthodontically treated patients on short recall. J Periodontal Res, 24, 113–20
  • Hajishengallis G, Sharma A, Russell MW, Genco RJ. (2002). Interactions of oral pathogens with toll-like receptors: Possible role in atherosclerosis. Ann Periodontol, 7, 72–8
  • Hajishengallis G, Wang M, Liang S, et al. (2008). Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci USA, 105, 13532–7
  • Han X, Lin X, Seliger AR, et al. (2009). Expression of receptor activator of nuclear factor-kappaB ligand by B cells in response to oral bacteria. Oral Microbiol Immunol, 24, 190–6
  • Hart GT, Shaffer DJ, Akilesh S, et al. (2004). Quantitative gene expression profiling implicates genes for susceptibility and resistance to alveolar bone loss. Infect Immun, 72, 4471–9
  • Hasebe A, Yoshimura A, Into T, et al. (2004). Biological activities of Bacteroides forsythus lipoproteins and their possible pathological roles in periodontal disease. Infect Immun, 72, 1318–25
  • Holt SC, Ebersole JL. (2005). Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol, 2000, 38, 72–122
  • Honda T, Aoki Y, Takahashi N, et al. (2008). Elevated expression of IL-17 and IL-12 genes in chronic inflammatory periodontal disease. Clin Chim Acta, 395, 137–41
  • Ishikawa I, Nakashima K, Koseki T, et al. (2000). Induction of the immune response to periodontopathic bacteria and its role in the pathogenesis of periodontitis. Periodontol, 14, 79–111
  • Kikkert R, Laine ML, Aarden LA, van Winkelhoff AJ. (2007). Activation of toll-like receptors 2 and 4 by gram-negative periodontal bacteria. Oral Microbiol Immunol, 22, 145–51
  • Kikuchi T, Matsuguchi T, Tsuboi N, et al. (2001). Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J Immunol, 166, 3574–9
  • Kotake S, Nanke Y, Mogi M, et al. (2005). IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol, 35, 3353–63
  • Kuchroo VK, Awasthi A. (2012). Emerging new roles of Th17 cells. Eur J Immunol, 42, 2211–14
  • Kusumoto Y, Hirano H, Saitoh K, et al. (2004). Human gingival epithelial cells produce chemotactic factors interleukin-8 and monocyte chemoattractant protein-1 after stimulation with Porphyromonas gingivalis via toll-like receptor 2. J Periodontol, 75, 370–9
  • Lee SF, Andrian E, Rowland E, Marquez IC. (2009). Immune response and alveolar bone resorption in a mouse model of Treponema denticola infection. Infect Immun, 77, 694–8
  • Mackler BF, Frostad KB, Robertson PB, Levy BM. (1977). Immunoglobulin bearing lymphocytes and plasma cells in human periodontal disease. J Periodontal Res, 12, 37–45
  • Matsumoto C, Oda T, Yokoyama S, et al. (2012). Toll-like receptor 2 heterodimers, TLR2/6 and TLR2/1 induce prostaglandin E production by osteoblasts, osteoclast formation and inflammatory periodontitis. Biochem Biophys Res Commun, 428, 110–15
  • McInturff JE, Modlin RL, Kim J. (2005). The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol, 125, 1–8
  • Monteiro AC, Scovino A, Raposo S, et al. (2009). Kinin danger signals proteolytically released by gingipain induce Fimbriae-specific IFN-gamma- and IL-17-producing T cells in mice infected intramucosally with Porphyromonas gingivalis. J Immunol, 183, 3700–11
  • Mori Y, Yoshimura A, Ukai T, et al. (2003). Immunohistochemical localization of Toll-like receptors 2 and 4 in gingival tissue from patients with periodontitis. Oral Microbiol Immunol, 18, 54–8
  • Mosmann TR, Cherwinski H, Bond MW, et al. (2005). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. J Immunol, 175, 5–14
  • Muthukuru M, Jotwani R, Cutler CW. (2005). Oral mucosal endotoxin tolerance induction in chronic periodontitis. Infect Immun, 73, 687–94
  • Myneni SR, Settem RP, Connell TD, et al. (2011). TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss. J Immunol, 187, 501–9
  • Myneni SR, Settem RP, Sojar HT, et al. (2012). Identification of a unique TLR2-interacting peptide motif in a microbial leucine-rich repeat protein. Biochem Biophys Res Commun, 423, 577–82
  • Needleman I, Hirsch N. (2007). Oral health and respiratory diseases. Is there an association between oral health and pneumonia or other respiratory diseases? Evid Based Dent, 8, 116
  • Okada H, Kida T, Yamagami H. (1983). Identification and distribution of immunocompetent cells in inflamed gingiva of human chronic periodontitis. Infect Immun, 41, 365–74
  • Papadopoulos G, Weinberg EO, Massari P, et al. (2013). Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J Immunol, 190, 1148–57
  • Pasare C, Medzhitov R. (2005). Toll-like receptors: Linking innate and adaptive immunity. Adv Exp Med Biol, 560, 11–18
  • Paul WE, Zhu J. (2010). How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol, 10, 225–35
  • Pompei L, Jang S, Zamlynny B, et al. (2007). Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J Immunol, 178, 5192–9
  • Ren L, Leung WK, Darveau RP, Jin L. (2005). The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis. J Periodontol, 76, 1950–9
  • Rodan GA, Martin TJ. (2000). Therapeutic approaches to bone diseases. Science, 289, 1508–14
  • Ruby J, Rehani K, Martin M. (2007). Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2. Infect Immun, 75, 5763–8
  • Sahingur SE, Xia XJ, Alamgir S, et al. (2010). DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines. Mol Oral Microbiol, 25, 123–35
  • Sato K, Suematsu A, Okamoto K, et al. (2006). Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exper Med, 203, 2673–82
  • Scannapieco FA. (2005). Systemic effects of periodontal diseases. Dent Clin North Am, 49, 533–50, vi
  • Schenkein HA, Koertge TE, Brooks CN, et al. (2010). IL-17 in sera from patients with aggressive periodontitis. J Dent Res, 89, 943–7
  • Seymour GJ, Greenspan JS. (1979). The phenotypic characterization of lymphocyte subpopulations in established human periodontal disease. J Periodontal Res, 14, 39–46
  • Sharma A. (2000). Virulence mechanisms of Tannerella forsythia. Periodontol, 54, 106–16
  • Sharma A, Inagaki S, Honma K, et al. (2005). Tannerella forsythia-induced alveolar bone loss in mice involves leucine-rich-repeat BspA protein. J Dent Res, 84, 462–7
  • Socransky SS, Haffajee AD, Cugini MA, et al. (1998). Microbial complexes in subgingival plaque. J Clin Periodontol, 25, 134–44
  • Spahr A, Klein E, Khuseyinova N, et al. (2006). Periodontal infections and coronary heart disease: Role of periodontal bacteria and importance of total pathogen burden in the Coronary Event and Periodontal Disease (CORODONT) study. Arch Intern Med, 166, 554–9
  • Stoufi ED, Taubman MA, Ebersole JL, et al. (1987). Phenotypic analyses of mononuclear cells recovered from healthy and diseased human periodontal tissues. J Clin Immunol, 7, 235–45
  • Tabeta K, Yamazaki K, Akashi S, et al. (2000). Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun, 68, 3731–5
  • Takami M, Kim N, Rho J, Choi Y. (2002). Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol, 169, 1516–23
  • Takayanagi H. (2007). Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol, 7, 292–304
  • Takayanagi H. (2012). New developments in osteoimmunology. Nat Rev Rheumatol, 8, 684–9
  • Takeichi O, Haber J, Kawai T, et al. (2000). Cytokine profiles of T-lymphocytes from gingival tissues with pathological pocketing. J Dent Res, 79, 1548–55
  • Tanner AC, Izard J. (2006). Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol, 2000, 42, 88–113
  • Taubman MA, Eastcott JW, Shimauchi H, et al. (1994). Modulatory role of T lymphocytes in periodontal inflammation. In Genco R, Hamada S, Lehner T, et al, eds. Molecular Pathogenesis of Periodontal Disease. Washington, DC: ASM Press, 147–57
  • Teng YT. (2006). Protective and destructive immunity in the periodontium: Part 1–innate and humoral immunity and the periodontium. J Dent Res, 85, 198–208
  • Theill LE, Boyle WJ, Penninger JM. (2002). RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol, 20, 795–823
  • Wada T, Nakashima T, Hiroshi N, Penninger JM. (2006). RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med, 12, 17–25
  • Wang PL, Ohura K, Fujii T, et al. (2003). DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun, 305, 970–3
  • Wenink MH, Santegoets KC, Broen JC, et al. (2009). TLR2 promotes Th2/Th17 responses via TLR4 and TLR7/8 by abrogating the type I IFN amplification loop. J Immunol, 183, 6960–70
  • Yoshimura A, Kaneko T, Kato Y, et al. (2002). Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human toll-like receptor 4. Infect Immun, 70, 218–25
  • Zeituni AE, Jotwani R, Carrion J, Cutler CW. (2009). Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. J Immunol, 183, 5694–704
  • Zhu J, Yamane H, Paul WE. (2010). Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol, 28, 445–89

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.