68
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Modulation of CD4 T cell function by soluble MHC II-peptide chimeras

, &
Pages 547-573 | Published online: 10 Jul 2009

References

  • Sykulev Y., Cohen R. J., Eisen H. N. The law of mass action governs antigen-stimulated cytolytic activity of CD8 cytotoxic T lymphocytes. P.N.A.S. USA 1995; 92: 11990–11992
  • Schodin B. A., Tsomides T. J., Kranz D. M. Correlation between the number of T cell receptors required for T cell activation and TCR-ligand affinity. Immunity 1996; 5: 137–146
  • Liu C-P., Crawford F., Marrack P., Kappler J. T cell positive selection by a high density, low affinity ligand. P.N.A.S. USA 1998; 95: 4522–4526
  • Ashton-Rickardt P. G., Bandeira A., Delaney J. R., Van Kaer L., Pircher H-P., Zinkernagel R. M., Tonegawa S. Evidence for a different avidity model of T cell selection in the thymus. Cell 1994; 76: 651–663
  • De Magistris M. T., Alexander J., Coggeshall M., Altman A., Gaeta F. C., Grey H. M., Sette A. Antigen-analog histocompatibility complexes act as antagonists of the T cell receptor. Cell 1992; 68: 625–634
  • Soloway P., Fish S., Passmore H., Gefter M., Coffee R., Manser T. Regulation of the immune response to peptide antigens: differential induction of immediate-type hypersensitivity and T cell proliferation due to changes in either peptide structure or major histocompatibility complex haplotype. J. Exp. Med. 1991; 174: 847–858
  • Racioppi L., Ronchese F., Matis L. A., Germain R. N. Peptide-major histocompatibility complex class II complexes with mixed agonist/antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling. J. Exp. Med. 1993; 177: 1047–1060
  • Hansburg D., Fairwell T., Schwartz R. H., Appella E. The T lymphocyte response to cytochrome c. IV. Distinguishable sites on a peptide antigen which affect antigenic strength and memory. J. Immunol. 1983; 131: 319–324
  • Windhagen A., Scholz C., Hollsberg P., Sette A., Hafler D. A. Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 1995; 2: 373–382
  • Kersh G. J., Kersh E. N., Fremont D. H., Allen P. M. High-and low-potency ligands with similar affinities for the TCR: the importance of kinetics in TCR signaling. Immunity 1998; 9: 817–826
  • Germain R. N., Stefanova I. The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 1999; 17: 467–522
  • McKeithan T. W. Kinetics proofreading in T cell receptor signal transduction. P.N.A.S. USA 1995; 92: 5042–5046
  • Rabinowitz J. D., Beeson C., Lyons D. S., Davis M. M., McConnell H. M. Kinetic discrimination in T cell activation. P.N.A.S. USA 1996; 93: 1401–1405
  • Lyons D. S., Lieberman S. A., Hampl J., Boniface J. J., Chien Y-h., Ber L. J., Davis M. M. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates tan agonists. Immunity 1996; 5: 53–61
  • Davis M. M., Boniface J. J., Reich Z., Lyons D., Hampl J., Arden B., Chien Y-H. Ligand recognition by T cell receptors. Annu. Rev. Immunol. 1998; 16: 523–544
  • Reich Z., Boniface J. J., Lyons D. S., Borochov N., Wachte E. J., Davis M. M. Ligand-specific oligomerization of T cell receptor molecules. Nature 1997; 387: 617–620
  • Brown J. H., Jardetzky T. X., Gorga J. C., Stern L. J., Urban R. G., Strominger J. L., Wiley D. C. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993; 364: 33–39
  • Grakoui A., Bromley S. K., Sumen C., Davis M. M., Shaw A. S., Allen P. M., Dustin M L. The immunological synapse: a molecular machine controlling T cell activation. Science 1999; 285: 221–227
  • Porgador A., Yewdell J. W., Deng Y., Bennink J. R., Germain R. N. Localization, quantitation and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 1997; 6: 715–726
  • Dadaglio G., Nelson C. A., Deck M. B., Petzold S. J., Unanue E. R. Characterization and quantification of peptide-MHC complexes produced from egg lysozyme using a monoclonal antibody. Immunity 1997; 6: 727–738
  • Andersen P. S., Stryhn A., Hansen B. E., Fugger L., Engberg J., Buus S. A. Recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. P.N.A.S. USA 1996; 93: 1820–1824
  • Corr M., Slanetz A. E., Boyd L. F., Jelonek M. T., Khilko S., al-Ramadi B. K., Kim Y. S., Maher A. E., Bothwell A. L., Margulies D. H. T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity. Science 1994; 265: 946–949
  • Matsui K., Boniface J. J., Steffner P., Reay P. A., Davis M. M. Kinetics of T cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T cell responsiveness. P.N.A.S. USA 1994; 91: 12862–12866
  • Seth A., Stern L. J., Ottenhoff T. H., Engel I., Owen M. J., Lamb J. R., Klausner R. D., Wiley D. C. Binary and ternary complexes between T cell receptor, class II MHC and superantigen in vitro. Nature 1994; 369: 324–327
  • al-Ramadi B. K., Jelonek M. T., Boyd L. F., Margulies D.h., Bothwell A. L. Lack of strict correlation of functional sensitization with the apparent affinity of MHC/peptide complexes for the TCR. J. Immunol. 1995; 155: 662–673
  • Garcia K. C., Scott C. A., Brunmark A., Carbone F. R., Peterson P. A., Wilson I. A., Teyton L. CD28 enhances formation of stable T cell receptor/MHC class I molecule complexes. Nature 1996; 384: 577–581
  • Alam S. M., Travers P. J., Wung J. L., Nasholds W., Redpath S., Jameson S. C., Gascoiggne N. R. T cell receptor affinity and thymocyte positive selection. Nature 1996; 381: 616–620
  • Seibel J. L., Wilson N., Kozono H., Marrack P., Kappler J. W. Influence of the NH2-terminal amino acid of the T cell receptor alpha chain on major histocompatibility complex (MHC) class II+ peptide recognition. J. Exp Med. 1997; 185: 1919–1927
  • Matsui K., Boniface J. J., Reay P. A., Schild H., Fazekas de St. Groth B., Davis M. M. Low affinity interaction of peptide-MC complexes with T cell receptor. Science 1991; 254: 1788–1791
  • Weber S., Traunecker A., Oliveri S., Gerhard W., Karjalainen K. Specific low-affinity recognition of major histocompatibility complexes plus peptide by soluble T cell receptor. Nature 1992; 356: 793–796
  • Sykulev Y., Brunmark A., Jackson M., Cohen R. J., Peterson P. A., Eisen H. N. Kinetics and affinity of reactions between an antigen-specific T cell receptor and peptide-MHC complexes. Immunity 1994; 1: 15–22
  • Sykulev Y., Brunmark A., Tsmds T. J., Kagyama S., Jackson M., Hansen H. N. High-affinity reactions between antigen-specific T cell receptors and peptides associated with allogeneic and syngeneic major histocompatibility complex class I proteins. P.N.A.S. USA 1994; 91: 11487–11491
  • Luescher I. F., Vivier E., Layer A., Mahiou J., Godeau F., Malissen B., Romero P. CD8 modulation of T cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 1995; 373: 353–356
  • Kessler B. M., Bassanini P., Cerottini J. C., Luescher I. F. Effect of epitope modification on T cell receptor-ligand binding and antigen recognition by seven H-2Kd-restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative. J. Exp. Med. 1997; 185: 629–640
  • Sant'Angelo D. B., Waterbury G., Preston-Hurlburt P., Yoon S. T., Medzihov R., Hong S. C., Janeway C. A., Jr. The specificity and orientation of a TCR to its peptide-MC class II ligands. Immunity 1996; 4: 367–376
  • Jorgenssen J. L., Reay P. A., Hussey R. E., Hodgdon J. C., Schlossman S. F., Reinherz E. L. Relationship to the T3 molecular complex. J. Exp. Med. 1983; 157: 705–719
  • Fields B. A., Malchioli E. L., Li H., Ysern X., Stauffacher C. V., Schlievert P. M., Karjalainen K., Mariuzza R. A. Crystal structure of a T cell receptor beta-chain complexed with superantigen. Nature 1996; 384: 188–192
  • Jardetzky T. S., Brown J. H., Gorga J. C., Stern L. J., Urban R. G., Chi Y. I., Stauffacker C., Strominger J., Wiley D. C. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 1994; 368: 711–718
  • Li H., Llera A., Tsuchira D., Leder L., Ysern X., Schlivert P. M., Karjalainen K., Maruizza R. A. Three-dimensional structure of the complex between a T cell receptor beta chain and the superantigen staphylococcal enterotoxin B. Immunity 1998; 9: 807–816
  • Reinherz E. L., Tan K., Tang L., Kern P., Liu J-h., Xiong Y., Hussey R. E., Smolyar A., Hare B., Zhang R., Joachimiak A., Chang H.-C., Wagner G., Wang J.-H. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 1999; 286: 1913–1921
  • Smith K. J., Pyrdol J., Gauthier L., Wiley D. C., Wucherpfennig K. W. Crystal structure of HLA-DR2 (DRA* 0101, DRB1* 1501) complexed with a peptide from human myelin basic protein. J. Exp. Med. 1998; 188: 1511–1520
  • Wucherpfennig K. W., Strominger J. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995; 80: 695–705
  • Clayton L. K., Sieh M., Pious D. A., Reinherz E. L. Identification of human CD4 residues affecting class II MHC versus HIV-I gpl20 binding. Nature 1989; 339: 548–551
  • Moebius U., Clayton L. K., Abraham S., Diener A., Yunis J. J., Harrison S. C., Reinherz E. L. Human immunodeficiency virus gp 120 binding C'C” ridge of CD4 domain I is also involved in interaction with class II major histocompatibility complex molecules. P.N.A.S. USA 1992; 87: 12008–12012
  • Moebius U., Pallai P., Harrison S. C., Reinherz E. L., E. L. Delineation of an extended surface contact area on human CD4 involved in class II major histocompatibility complex binding. P.N.A.S. USA 1993; 90: 8259–8263
  • Houlgatte R., Scarmato P., Mahormy E. S., Martin M., Ostankovitch M., Lafosse S., Vervisch A., Auffray C., Platier-Tonneau D. HLA class II antigens and the HIV envelope glycoprotein gpl20 bind to the same face of CD4. J. Immunol. 1994; 152: 4475–4488
  • Konig R., Huan L.-Y., Germain R. N. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 1992; 356: 796–798
  • Hussey R. E., Richardson N. E., Kowalsk I. M., Brown N. R., Chang H. C., Siliciano R. F., Dorfman T., Walker B., Sodroski J., Reinherz E. L. A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 1988; 331: 78–81
  • Wang J. H., Yan Y. W., Garrett T. P., Rodger D. W., Garlick R. L., Tarr G. E., Husain Y., Reinherz E. L., Harrison S. C. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 1990; 348: 411–418
  • Ryu S.-E., Kwong P. D., Truneh A., Porter T. G., Arthos G., Rosenberg M., Dai X. P., Xuong N. H., Axel R., Sweet R. W. Molecular characteristics of an HIV-binding recombinant fragment of human CD4. Nature 1990; 348: 419–426
  • Kwong P. D., Ryu S.-E., Hendrickson W. A., Axel R., Sweet R. M., Folena-Wasserman G., Hensley P., Sweet R. W. Molecular characteristics of recombinant human CD4 as deduced from polymorphic crystals. P.N.A.S. USA 1990; 87: 6423–6427
  • Brown J. H., Jardetzky T. S., Gorga J. C., Stern J. L., Urban R. G., Strominger J., Wiley D. C. Three-dimensional structure of the human class II major histocompatibility antigen HLA-DR1. Nature 1993; 364: 33–39
  • Mazerolles F., Amblard F., Lumbroso C., Lecompte O., van der Moortele P. F., Barbat C., Piatier-Tonneau D., Auffray C., Fischer A. Regulation of T helper-Blymphocyte adhesion through CD4-HLA class II interaction. Eur. J. Immunol. 1990; 20: 637–644
  • Nag B., Wada H. G., Passmore D., Clark B. R., Sharma S. D., MsCornell H. M. Purified β-chain of MHC class II binds to CD4 molecules on transfected HeLa cells. J. Immunol. 1993; 150: 1358–1364
  • Sakihama T., Smolyar A., Reinherz E. L. Molecular recognition of antigen involves lattice formation between CD4, MHC class II and TCR molecules. Immunol. Today 1995; 16: 581–587
  • Konig R., Fleury S., Germain R. N. The structural basis of CD4-MHC class II onteractions: coreceptor contributions to T cell receptor antigen recognition and oligomerization-dependent signal transduction. Curr. Topics Microbiol. Immunol. 1996; 205: 19–46
  • Monks C. R., Freiberg B. A., Kupfer H., Sciaky N., Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395: 82–86
  • Krummel M. F., Sjaastad M. D., Wulfing C., Davis M. M. Differential clustering of CD4 and CD3 zeta during T cell recognition. Science 2000; 289: 1349–1352
  • Kozono H., Whit J., Clements J., Marrack P., Kappler J. W. Production of soluble MHC class II proteins with covalently bound peptides. Nature 1994; 369: 151–154
  • Casares S., Bona C. A., Brumeanu T.-D. Engineering and characterization of a murine MHC class II-Immunoglobulin chimera expressing an immunodominant CD4 T viral epitope. Protein Engineering 1997; 10: 1295–1301
  • Hamad A. R.A., O'Herrin S., Lebowitz M. S., Srikishann A., Bieler J., Schneck J., Pardoll D. Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 1998; 188: 1633–1640
  • Appel H., Gauthier L., Pyrdol J., Wucherpfennig K. W. Kinetics of T cell receptor binding by bivalent HLA-DR/peptide complexes that activate antigen-specific human T cells. J. Biol. Chem. 2000; 275: 312–32
  • Crawford F., Kozono H., White J., Marrack P., Kappler J. W. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 1998; 8: 675–682
  • Cochran J. R., Cameron T. O., Stern J. L. The relationship of MHC-peptide binding and T cell activation probed with chemically defined MHC class II oligomers. Immunity 2000; 12: 241–250
  • Casares S., Bona C., Brumeanu T.-D. Enzymatically mediated engineering of multivalent MHC II-peptide chimeras. Protein Engineering 2001; 14, (in press)
  • Boniface J. J., Rabinowitz R. D., Wulfing C., Hampl J., Reich Z., Altman J. D., Kantor R., Beeson C., McCornell H. M., Davis M. M. Initiation of signal transduction through the T cell receptor requires multivalent engagement of peptide/MHC ligands. Immunity 1998; 9: 459–466
  • Cochran J. R., Stern J. L. A diverse set of oligomeric class II MHC-peptide complexes for probing T cell receptor interactions. Chem. Biol. 2000; 7: 683–696
  • Casares S., Zong C. S., Radu D. L., Miller A., Bona C. A., Brumeanu T.-D. Antigen-specific signaling by a soluble, dimeric peptide/MHC Class II/Fc chimera leading to Th2 differentiation. J. Exp. Med. 1999; 190: 543–553
  • Brumeanu T.-D., Bona C. A., Casares S. T cell tolerance and autoimmune diabetes. Intl. Immunol. 2001, (in press)
  • Combadiere B., e Sousa C. R., Germain R. N., Lenardo M. J. Selective induction of apoptosis in mature T lymphocytes by variant T cell receptor ligands. J. Exp. Med. 1998; 187: 349–355
  • Lanzavecchia A. Understanding the mechanisms of sustained signaling and T cell activation. J. Exp. Med. 1997; 185: 1717–1719
  • Casares S., Bona C., Brumeanu T.-D. Antigen-specific down-regulation of T cells by doxorubicin delivered by MHC II-peptide chimeras. Nature Biotechnology 2001; 19: 142–147
  • Mosmann T. R., Coffman R. L. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1998; 7: 145–173
  • Thomas M. J., Kemeny D. M. Novel CD4 and CD8 T cell subsets. Allergy 1998; 53: 1122–1132
  • Daugelat S., Kauffman S. H.E. Role of Th1 and Th2 cells in bacterial infections. Chem. Immunol. 1996; 63: 66–69
  • Romagnani S. The Th1/Th2 paradigm. Immunol. Today 1997; 18: 263–266
  • Wegman T. G., Lin H., Guilbert L., Mosmann T. R. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon. Immunol. Today 1993; 14: 353–356
  • Piccinni M.-P., Giudizi M.-G., Biagiotti R., Beloni L., Giannarini L., Sampognaro S., Parronchi P., Manetti R., Annunziato F., Livi C., Romagnani S., Maggi E. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J. Immunol. 1995; 155: 128–133
  • Romagnani S. The Th1/Th2 Paradigm in Disease, R.G. Landes company. Springer-Verlag, Austin 1997
  • Viola J. P.B., Rao A. Molecular regulation of cytokine gene expression during the immune response. J. Clin. Immunol. 1999; 19: 98–108
  • Murphy M. K., Ouyang W., Farrar J. D., Yang J., Ranganath S., Asnagli H., Afkarian M., Murphy T. L. Signaling and transcription in T helper development. Annu. Rev. Immunol. 2000; 18: 451–494
  • Kaplan M. H., Sun Y. L., Hoey T., Grusby M. J. Impaired IL-12 responses and enhanced development of Th2 cells in STAT4-deficient mice. Nature 1996; 382: 174–177
  • Kaplan M. H., Schindler U., Smiley S. T., Grusby M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996; 4: 313–319
  • Haspel R. L., Salditt-Georgief M., Darnell J. E., Jr. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EM BO J. 1996; 15: 6262–6268
  • Starr R., Willson T. A., Viney E. M., Murray L. J.L., Rayner J. R., Jenkins B. J., Gonda T. J., Alexander W. S., Metcalf D., Nicola N. A., Hilton D. J. A family of cytokine-inducible inhibitors of signaling. Nature 1997; 387: 917–921
  • Altare F., Durandy A., Lammas D., Emile J.-F., Lamhamedi S., Diest F., Drysdale P., Jouanguy E., Doffinger R., Bernaudin F., Jeppsson O., Gollob J. A., Meinl E., Segal A. W., Fisher A., Kumararatne D., Casanova J.-L. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998; 280: 1432–1435
  • Schwartz R. Models of T cell anergy: Is there a common molecular mechanism. J. Exp. Med. 1996; 184: 1–6
  • Garcia S., DiSanto J., Stockinger B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 1999; 11: 163–171
  • Tsuruta L., Arai N., Arai K.-I. Transcriptional control of cytokine genes. Intern. Rev. Immunol. 1998; 16: 581–616
  • Neumann M., Grieshammer T., Chuvpilo S., Kneitz B., Lohoff M., Schimpl A., Franza B. R., Jr., Serfling E. RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A. EM BO J. 1995; 14: 1991–2004
  • Kuo C. T., Leiden J. M. Transcriptional regulation of T lymphocyte development and function. Annu. Rev. Immunol. 1999; 17: 149–187
  • Degermann S., Reilly C., Scott B., Ogata L., von Boehmer H., Lo D. On the various manifestations of spontaneous diabetes in rodent models. Eur. J. Immunol. 1994; 24: 3155–3160
  • Pauza M. E., Nguyen A., Wolfe T., Ho I. C., Glimcher L. H., von Herrath M., Lo D. D. Variable effects of transgenic c-Maf on autoimmune diabetes. Diabetes 2001; 50: 39–46
  • Debray-Sachs M., Carnaud C., Boitard C., Cohen H., Gresser I., Bedossa P., Bach J.-F. Prevention of diabetes in NOD mice treated with antibody to murine IFN-gamma. J. Autoimmun. 1991; 4: 237–248
  • Clark B. R., Desphande S. V., Sharma S. D., Nag B. Antigen-specific deletion of cloned T cells using peptide-toxin conjugate complexed with purified class II major histocompatibility complex antigen. J. Biol. Chem. 1994; 269: 94–99
  • Ishioka G. Y., Lamont A. G., Bulbow N., Gaeta F. C., Settte A., Gray M. H. MHC interaction and T cell recognition of carbohydrates and glycopeptides. J. Immunol. 1992; 148: 2446–2451
  • Brumeanu T.-D., Dehazya P., Wolf I., Bona C. A. Enzymatically mediated, glycosidic conjugation of immunoglobulins with viral epitopes. J. Immunol. Methods 1995; 183: 185–197
  • Blum R. H., Carter S. K. Adriamycin. A new anticancer drug with significant clinical activity. Ann. Intern. Med. 1974; 80: 249–259
  • Tewey K. M., Rowe T. C., Yang L., Halligan B. D., Liu L. F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984; 226: 466–468
  • Wang H., et al. Decreased CP-1 (NF-Y) activity results in transcriptional down-regulation of topoisomerase II α in a doxorubicin-resistant variant of human multiple myeloma RPMI 8226. Biochem. Biophys. Res. Commun. 1997; 237: 217–224
  • Tritton T. R. Cell surface actions of adriamycin. Pharmacol Ther. 1991; 49: 293–309

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.