1,314
Views
156
CrossRef citations to date
0
Altmetric
General Article

microRNAs in Inflammation

&
Pages 535-561 | Published online: 02 Dec 2009

REFERENCES

  • V. Ambros. microRNAs: Tiny regulators with great potential. Cell 107: 823–826, 2001.
  • R.C. Lee and V. Ambros. An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864, 2001.
  • M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl. Identification of novel genes coding for small expressed RNAs. Science 294: 853–858, 2001.
  • N.C. Lau, L.P. Lim, E.G. Weinstein, and D.P. Bartel. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862, 2001.
  • D.P. Bartel. microRNAs: Target recognition and regulatory functions. Cell 136: 215–233, 2009.
  • M. Selbach, B. Schwanhausser, N. Thierfelder, . Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63, 2008.
  • D. Baek, J. Villen, C. Shin, . The impact of microRNAs on protein output. Nature 455: 64–71, 2008.
  • R.C. Friedman, K.K. Farh, C.B. Burge, and D.P. Bartel. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105, 2009.
  • A.M. Heimberg, L.F. Sempere, V.N. Moy, . microRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105: 2946–2950, 2008.
  • A.E. Pasquinelli, B.J. Reinhart, F. Slack, . Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86–89, 2000.
  • C.Z. Chen, L. Li, H.F. Lodish, and D.P. Bartel. microRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86, 2004.
  • J.F. Chen, E.M. Mandel, J.M. Thomson, . The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228–233, 2006.
  • E. Sonkoly, T. Wei, P.C. Janson, . microRNAs: Novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2: e610, 2007.
  • R. Yi, M.N. Poy, M. Stoffel, and E. Fuchs. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452: 225–229, 2008.
  • J. Chang, E. Nicolas, D. Marks, . miR-122, a mammalian liver-specific microRNA is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1: 106–113, 2004.
  • E. Sonkoly, M. Stahle, and A. Pivarcsi. microRNAs and immunity: Novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18: 131–140, 2008.
  • D. Catalucci, M.V. Latronico, and G. Condorelli. microRNAs control gene expression: Importance for cardiac development and pathophysiology. Ann N Y Acad Sci 1123: 20–29, 2008.
  • C. Xiao, L. Srinivasan, D.P. Calado, . Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9: 405–414, 2008.
  • A. Ventura, A.G. Young, M.M. Winslow, . Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132: 875–886, 2008.
  • V. Ambros. The functions of animal microRNAs. Nature 431: 350–355, 2004.
  • H.K. Saini, A.J. Enright, and S. Griffiths-Jones. Annotation of mammalian primary microRNAs. BMC Genomics 9: 564, 2008.
  • Y. Lee, C. Ahn, J. Han, . The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419, 2003.
  • G. Hutvagner, J. McLachlan, A.E. Pasquinelli, . A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838, 2001.
  • E. Bernstein, A.A. Caudy, S.M. Hammond, and G.J. Hannon. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366, 2001.
  • A. Grishok, A.E. Pasquinelli, D. Conte, . Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23–34, 2001.
  • J.R. Neilson, G.X. Zheng, C.B. Burge, and P.A. Sharp. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21: 578–589, 2007.
  • C.Z. Chen and H.F. Lodish. microRNAs as regulators of mammalian hematopoiesis. Semin Immunol 17: 155–165, 2005.
  • R. Garzon and C.M. Croce. microRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15: 352–358, 2008.
  • X. Zhou, J.G. Krueger, M.C. Kao, . Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol Genomics 13: 69–78. , 2003.
  • C. Xiao, D.P. Calado, G. Galler, . miR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131: 146–159, 2007.
  • Q.J. Li, J. Chau, P.J. Ebert, . miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129: 147–161, 2007.
  • F. Fazi, S. Racanicchi, G. Zardo, . Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12: 457–466, 2007.
  • H. Wu, J.R. Neilson, P. Kumar, . miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE 2: e1020, 2007.
  • E. Sonkoly and A. Pivarcsi. Advances in microRNAs: Implications for immunity and inflammatory diseases. J Cell Mol Med 13: 24–38, 2009.
  • M.A. Lindsay. microRNAs and the immune response. Trends Immunol 29: 343–351, 2008.
  • K.D. Taganov, M.P. Boldin, K.J. Chang, and D. Baltimore. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103: 12481–12486, 2006.
  • M.M. Perry, S.A. Moschos, A.E. Williams, . Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180: 5689–5698, 2008.
  • J. Stanczyk, D.M. Pedrioli, F. Brentano, . Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58: 1001–1009, 2008.
  • T. Nakasa, S. Miyaki, A. Okubo, . Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58: 1284–1292, 2008.
  • K. Yamasaki, T. Nakasa, S. Miyaki, . Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum 60: 1035–1041, 2009.
  • S.A. Moschos, A.E. Williams, M.M. Perry, . Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8: 240, 2007.
  • E. Sonkoly, M. Stahle, and A. Pivarcsi. microRNAs: Novel regulators in skin inflammation. Clin Exp Dermatol 33: 312–315, 2008.
  • Y. Tang, X. Luo, H. Cui, . microRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60: 1065–1075, 2009.
  • K.M. Pauley, S. Cha, and E.K. Chan. microRNA in autoimmunity and autoimmune diseases. J Autoimmun 32: 189–194, 2009.
  • D. Iliopoulos, K.N. Malizos, P. Oikonomou, and A. Tsezou. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3: e3740, 2008.
  • S.W. Jones, G. Watkins, N. Le Good, . The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage 17: 464–472, 2009.
  • A.E. Williams, M.M. Perry, S.A. Moschos, . Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 36: 1211–1215, 2008.
  • J. Kluiver, S. Poppema, D. de Jong, . BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal, and diffuse large B cell lymphomas. J Pathol 207: 243–249, 2005.
  • R.M. O'Connell, D.S. Rao, A.A. Chaudhuri, . Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205: 585–594, 2008.
  • N. Habbe, J.B. Koorstra, J.T. Mendell, . microRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther 8: 340–346, 2009.
  • A. Rodriguez, E. Vigorito, S. Clare, . Requirement of bic/microRNA-155 for normal immune function. Science 316: 608–611, 2007.
  • T.H. Thai, D.P. Calado, S. Casola, . Regulation of the germinal center response by microRNA-155. Science 316: 604–608, 2007.
  • H.F. Moffett and C.D. Novina. A small microRNA makes a Bic difference. Genome Biol 8: 221, 2007.
  • E. Vigorito, K.L. Perks, C. Abreu-Goodger, . microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27: 847–859, 2007.
  • S. Kohlhaas, O.A. Garden, C. Scudamore, . Cutting edge: The Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 182: 2578–2582, 2009.
  • L.F. Lu, T.H. Thai, D.P. Calado, . Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30: 80–91, 2009.
  • M.M. Chong, J.P. Rasmussen, A.Y. Rudensky, and D.R. Littman. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205: 2005–2017, 2008.
  • A. Liston, L.F. Lu, D. O'Carroll, . Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 205: 1993–2004, 2008.
  • X. Zhou, L.T. Jeker, B.T. Fife, . Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205: 1983–1991, 2008.
  • B.S. Cobb, A. Hertweck, J. Smith, . A role for Dicer in immune regulation. J Exp Med 203: 2519–2527, 2006.
  • A. Marson, K. Kretschmer, G.M. Frampton, . Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935, 2007.
  • Y. Zheng, S.Z. Josefowicz, A. Kas, . Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940, 2007.
  • R.M. O'Connell, K.D. Taganov, M.P. Boldin, . microRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104: 1604–1609, 2007.
  • E. Tili, J.J. Michaille, A. Cimino, . Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179: 5082–5089, 2007.
  • M. Ceppi, P.M. Pereira, I. Dunand-Sauthier, . microRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106: 2735–2740, 2009.
  • R.T. Martinez-Nunez, F. Louafi, P.S. Friedmann, and T. Sanchez-Elsner. microRNA-155 modulates pathogen binding ability of dendritic cells by downregulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284: 16334–16342, 2009.
  • L. He, J.M. Thomson, M.T. Hemann, . A microRNA polycistron as a potential human oncogene. Nature 435: 828–833, 2005.
  • Y. Hayashita, H. Osada, Y. Tatematsu, . A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628–9632, 2005.
  • J.T. Mendell. miRiad roles for the miR-17-92 cluster in development and disease. Cell 133: 217–222, 2008.
  • L. Fontana, E. Pelosi, P. Greco, . microRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9: 775–787, 2007.
  • Y. Dai, Y.S. Huang, M. Tang, . Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16: 939–946, 2007.
  • M.L. Si, S. Zhu, H. Wu, . miR-21-mediated tumor growth. Oncogene 26: 2799–2803, 2007.
  • J.A. Chan, A.M. Krichevsky, and K.S. Kosik. microRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033, 2005.
  • X. Wang, S. Tang, S.Y. Le, . Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3: e2557, 2008.
  • N. Dahiya, C.A. Sherman-Baust, T.L. Wang, . microRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS ONE 3: e2436, 2008.
  • C.H. Lawrie, S. Soneji, T. Marafioti, . microRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121: 1156–1161, 2007.
  • J.H. Gibcus, L.P. Tan, G. Harms, . Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia 11: 167–176, 2009.
  • C. Carissimi, V. Fulci, and G. Macino. microRNAs: Novel regulators of immunity. Autoimmun Rev 8: 520–524, 2009.
  • C.S. Velu, A.M. Baktula, and H.L. Grimes. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 113: 4720–4728, 2009.
  • T.X. Lu, A. Munitz, and M.E. Rothenberg. microRNA-21 is upregulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182: 4994–5002, 2009.
  • G.K. Scott, A. Goga, D. Bhaumik, . Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282: 1479–1486, 2007.
  • X.B. Shi, L. Xue, J. Yang, . An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 104: 19983–19988, 2007.
  • M.V. Iorio, M. Ferracin, C.G. Liu, . microRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070, 2005.
  • K. Nagayama, T. Kohno, M. Sato, . Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromo Canc 46: 1000–1010, 2007.
  • Y. Mizuno, K. Yagi, Y. Tokuzawa, . miR-125b inhibits osteoblastic differentiation by downregulation of cell proliferation. Biochem Biophys Res Commun 368: 267–272, 2008.
  • Y.S. Lee, H.K. Kim, S. Chung, . Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the downregulation of putative targets during differentiation. J Biol Chem 280: 16635–16641, 2005.
  • R. Malumbres, K.A. Sarosiek, E. Cubedo, . Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood 113: 3754–3764, 2009.
  • J. Huang, F. Wang, E. Argyris, . Cellular microRNAs contribute to HIV-1 latency in resting primary CD4(+) T lymphocytes. Nat Med 13: 1241–1247, 2007.
  • R. Yi, D. O'Carroll, H.A. Pasolli, . Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38: 356–362, 2006.
  • A.M. Lena, R. Shalom-Feuerstein, P. Rivetti di Val Cervo, . miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 15: 1187–1195, 2008.
  • X.M. Chen, P.L. Splinter, S.P. O'Hara, and N.F. LaRusso. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 282: 28929–28938, 2007.
  • F. Bazzoni, M. Rossato, M. Fabbri, . Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 106: 5282–5287, 2009.
  • C.J. Braun, X. Zhang, I. Savelyeva, . p53-Responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68: 10094–10104, 2008.
  • F. Wu, M. Zikusoka, A. Trindade, . microRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 135: 1624–1635, 2008.
  • D. Yu, A.H. Tan, X. Hu, . Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450: 299–303, 2007.
  • C.G. Vinuesa, M.C. Cook, C. Angelucci, . A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435: 452–458, 2005.
  • K.A. Padgett, R.Y. Lan, P.C. Leung, . Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 32: 246–253, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.