637
Views
24
CrossRef citations to date
0
Altmetric
Immunity in the Gut

Intestinal Immune Regulation as a Potential Diet-Modifiable Feature of Gut Inflammation and Autoimmunity

, , &
Pages 414-445 | Published online: 02 Dec 2009

REFERENCES

  • A.M. Platt and A.M. Mowat. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett 119: 22–31, 2008.
  • J.L. Coombes and F. Powrie. Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8: 435–446, 2008.
  • A. Izcue, J.L. Coombes, and F. Powrie. Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27: 313–338, 2009.
  • T.T. Macdonald and G. Monteleone. Immunity, inflammation, and allergy in the gut. Science 307: 1920–1925, 2005.
  • C. Catassi and A. Fasano. Celiac disease. Curr Opin Gastroenterol 24: 687–691, 2008.
  • M. Mojibian, H. Chakir, D.E. Lefebvre, . A diabetes-specific HLA-DR restricted pro-inflammatory T cell response to wheat polypeptides in tissue transglutaminase antibody negative patients with type 1 diabetes. Diabetes, 2009.
  • D.E. Lefebvre, K.L. Powell, A. Strom, and F.W. Scott. Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr 26: 175–202, 2006.
  • O. Vaarala, M.A. Atkinson, and J. Neu. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57: 2555–2562, 2008.
  • A. Fasano and T. Shea-Donohue. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2: 416–422, 2005.
  • M.C. Arrieta, L. Bistritz, and J.B. Meddings. Alterations in intestinal permeability. Gut 55: 1512–1520, 2006.
  • A.M. Mowat. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3: 331–341, 2003.
  • H. Tlaskalova-Hogenova, R. Stepankova, T. Hudcovic, . Commensal bacteria (normal microflora), mucosal immunity, and chronic inflammatory and autoimmune diseases. Immunol Lett 93: 97–108, 2004.
  • J. Visser, J. Rozing, A. Sapone, . Tight junctions, intestinal permeability, and autoimmunity: Celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci 1165: 195–205, 2009.
  • M.G. Laukoetter, P. Nava, and A. Nusrat. Role of the intestinal barrier in inflammatory bowel disease. World J Gastroenterol 14: 401–407, 2008.
  • R.D. Newberry and R.G. Lorenz. Organizing a mucosal defense. Immunol Rev 206: 6–21, 2005.
  • M.F. Cesta. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol 34: 599–608, 2006.
  • C. Mueller and A.J. Macpherson. Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 55: 276–284, 2006.
  • N.R. Locke, S. Stankovic, D.P. Funda, and L.C. Harrison. TCR gamma delta intraepithelial lymphocytes are required for self-tolerance. J Immunol 176: 6553–6559, 2006.
  • B. Johansson-Lindbom and W.W. Agace. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 215: 226–242, 2007.
  • M. Schenk and C. Mueller. The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol 22: 391–409, 2008.
  • D. Kunkel, D. Kirchhoff, S. Nishikawa, . Visualization of peptide presentation following oral application of antigen in normal and Peyer's patches-deficient mice. Eur J Immunol 33: 1292–1301, 2003.
  • T. Worbs, U. Bode, S. Yan, . Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 203: 519–527, 2006.
  • T.W. Spahn, H.L. Weiner, P.D. Rennert, . Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. Eur J Immunol 32: 1109–1113, 2002.
  • A.M. Faria and H.L. Weiner. Oral tolerance. Immunol Rev 206: 232–259, 2005.
  • F. Hauet-Broere, W.W. Unger, J. Garssen, . Functional CD25- and CD25+ mucosal regulatory T cells are induced in gut-draining lymphoid tissue within 48 h after oral antigen application. Eur J Immunol 33: 2801–2810, 2003.
  • K. Fujihashi, T. Dohi, P.D. Rennert, . Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci U S A 98: 3310–3315, 2001.
  • R.L. Jump and A.D. Levine. Murine Peyer's patches favor development of an IL-10-secreting, regulatory T cell population. J Immunol 168: 6113–6119, 2002.
  • N.M. Tsuji, K. Mizumachi, and J. Kurisaki. Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer's patches. Int Immunol 15: 525–534, 2003.
  • H. Suzuki, S. Sekine, K. Kataoka, . Ovalbumin-protein sigma 1 M-cell targeting facilitates oral tolerance with reduction of antigen-specific CD4+ T cells. Gastroenterology 135: 917–925, 2008.
  • R.G. Lorenz and R.D. Newberry. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann N Y Acad Sci 1029: 44–57, 2004.
  • H. Hamada, T. Hiroi, Y. Nishiyama, . Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168: 57–64, 2002.
  • R.G. Lorenz, D.D. Chaplin, K.G. McDonald, . Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol 170: 5475–5482, 2003.
  • Y. Kanamori, K. Ishimaru, M. Nanno, . Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 184: 1449–1459, 1996.
  • A. Lugering and T. Kucharzik. Induction of intestinal lymphoid tissue: The role of cryptopatches. Ann N Y Acad Sci 1072: 210–217, 2006.
  • G. Eberl. Inducible lymphoid tissues in the adult gut: Recapitulation of a fetal developmental pathway? Nat Rev Immunol 5: 413–420, 2005.
  • C. Wang, J.S. McDonough, K.G. McDonald, . Alpha4beta7/MAdCAM-1 interactions play an essential role in transitioning cryptopatches into isolated lymphoid follicles and a nonessential role in cryptopatch formation. J Immunol 181: 4052–4061, 2008.
  • B. Rocha. The extrathymic T-cell differentiation in the murine gut. Immunol Rev 215: 166–177, 2007.
  • K.S. Michelsen and M. Arditi. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr Opin Hematol 14: 48–54, 2007.
  • K. Mahnke, T. Bedke, and A.H. Enk. Regulatory conversation between antigen presenting cells and regulatory T cells enhance immune suppression. Cell Immunol 250: 1–13, 2007.
  • M. Schenk and C. Mueller. Adaptations of intestinal macrophages to an antigen-rich environment. Semin Immunol 19: 84–93, 2007.
  • M. Rescigno, M. Urbano, B. Valzasina, . Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2: 361–367, 2001.
  • T. Sminia and S.H. Jeurissen. The macrophage population of the gastro-intestinal tract of the rat. Immunobiology 172: 72–80, 1986.
  • F. Blank, B. Rothen-Rutishauser, and P. Gehr. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 36: 669–677, 2007.
  • T. Spottl, M. Hausmann, M. Kreutz, . Monocyte differentiation in intestine-like macrophage phenotype induced by epithelial cells. J Leukoc Biol 70: 241–251, 2001.
  • L.E. Smythies, M. Sellers, R.H. Clements, . Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115: 66–75, 2005.
  • G. Rogler, M. Hausmann, D. Vogl, . Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol 112: 205–215, 1998.
  • T. Krajina, F. Leithauser, P. Moller, . Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol 33: 1073–1083, 2003.
  • P. Smith, N.E. Mangan, C.M. Walsh, . Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 178: 4557–4566, 2007.
  • T. Hirotani, P.Y. Lee, H. Kuwata, . The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J Immunol 174: 3650–3657, 2005.
  • K. Nakata, H. Inagawa, T. Nishizawa, . Specific messenger RNA expression for signal transduction molecules by lipopolysaccharide in intestinal macrophages. Clin Exp Immunol 143: 484–493, 2006.
  • B.O. Fabriek, M.M. Polfliet, R.P. Vloet, . The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood 109: 5223–5229, 2007.
  • J.G. Damoiseaux, E.A. Dopp, and C.D. Dijkstra. Cellular binding mechanism on rat macrophages for sialylated glycoconjugates, inhibited by the monoclonal antibody ED3. J Leukoc Biol 49: 434–441, 1991.
  • M.M. Polfliet, B.O. Fabriek, W.P. Daniels, . The rat macrophage scavenger receptor CD163: Expression, regulation and role in inflammatory mediator production. Immunobiology 211: 419–425, 2006.
  • C. Buechler, M. Ritter, E. Orso, . Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67: 97–103, 2000.
  • B.O. Fabriek, C.D. Dijkstra, and T.K. van den Berg. The macrophage scavenger receptor CD163. Immunobiology 210: 153–160, 2005.
  • D.M. Mosser and J.P. Edwards. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958–969, 2008.
  • M.M. Tiemessen, A.L. Jagger, H.G. Evans, . CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104: 19446–19451, 2007.
  • P.D. Smith, L.E. Smythies, M. Mosteller-Barnum, . Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167: 2651–2656, 2001.
  • M. Hausmann, S. Kiessling, S. Mestermann, . Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122: 1987–2000, 2002.
  • J. Rugtveit, A. Bakka, and P. Brandtzaeg. Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol 110: 104–113, 1997.
  • M. Schenk, A. Bouchon, S. Birrer, . Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine. J Immunol 174: 517–524, 2005.
  • A. Bouchon, J. Dietrich, and M. Colonna. Cutting edge: Inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164: 4991–4995, 2000.
  • N. Kamada, T. Hisamatsu, S. Okamoto, . Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol 175: 6900–6908, 2005.
  • T.L. Denning, Y.C. Wang, S.R. Patel, . Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8: 1086–1094, 2007.
  • N.D. Savage, T. de Boer, K. V. Walburg, . Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181: 2220–2226, 2008.
  • D.H. Munn, E. Shafizadeh, J.T. Attwood, . Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189: 1363–1372, 1999.
  • D.H. Munn and A.L. Mellor. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117: 1147–1154, 2007.
  • A.M. Wolf, D. Wolf, H. Rumpold, . Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin Immunol 113: 47–55, 2004.
  • M.I. Torres, M.A. Lopez-Casado, P. Lorite, and A. Rios. Tryptophan metabolism and indoleamine 2,3-dioxygenase expression in coeliac disease. Clin Exp Immunol 148: 419–424, 2007.
  • Z. Li and P.K. Srivastava. Tumor rejection antigen gp96/grp94 is an ATPase: Implications for protein folding and antigen presentation. Embo J 12: 3143–3151, 1993.
  • R.J. Binder, D.K. Han, and P.K. Srivastava. CD91: A receptor for heat shock protein gp96. Nat Immunol 1: 151–155, 2000.
  • K. Schreiter, M. Hausmann, T. Spoettl, . Glycoprotein (gp) 96 expression: Induced during differentiation of intestinal macrophages but impaired in Crohn's disease. Gut 54: 935–943, 2005.
  • M. Heike, C. Frenzel, D. Meier, and P.R. Galle. Expression of stress protein gp96, a tumor rejection antigen, in human colorectal cancer. Int J Cancer 86: 489–493, 2000.
  • T. Spoettl, M. Hausmann, M. Herlyn, . Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin Exp Immunol 145: 190–199, 2006.
  • M. Schenk, A. Bouchon, F. Seibold, and C. Mueller. TREM-1—Expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest 117: 3097–3106, 2007.
  • J. Rugtveit, E.M. Nilsen, A. Bakka, . Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology 112: 1493–1505, 1997.
  • J.P. Hugot, M. Chamaillard, H. Zouali, . Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599–603, 2001.
  • Y. Ogura, D.K. Bonen, N. Inohara, . A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603–606, 2001.
  • S. Maeda, L.C. Hsu, H. Liu, . Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 307: 734–738, 2005.
  • M.G. Netea, B.J. Kullberg, D.J. de Jong, . NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: Implications for Crohn's disease. Eur J Immunol 34: 2052–2059, 2004.
  • A. Iwasaki. Mucosal dendritic cells. Annu Rev Immunol 25: 381–418, 2007.
  • F.G. Chirdo, O.R. Millington, H. Beacock-Sharp, and A.M. Mowat. Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol 35: 1831–1840, 2005.
  • O. Annacker, J.L. Coombes, V. Malmstrom, . Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202: 1051–1061, 2005.
  • C.M. Sun, J.A. Hall, R.B. Blank, . Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204: 1775–1785, 2007.
  • E. Jaensson, H. Uronen-Hansson, O. Pabst, . Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205: 2139–2149, 2008.
  • B. Johansson-Lindbom, M. Svensson, O. Pabst, . Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 202: 1063–1073, 2005.
  • M.A. Silva, M. Porras, J. Jury, . Characterization of ileal dendritic cell distribution in a rat model of acute and chronic inflammation. Inflamm Bowel Dis 12: 457–470, 2006.
  • I. Monteleone, A.M. Platt, E. Jaensson, . IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. Eur J Immunol 38: 1533–1547, 2008.
  • S. Uematsu, M.H. Jang, N. Chevrier, . Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 7: 868–874, 2006.
  • J.L. Coombes, K.R. Siddiqui, C.V. Arancibia-Carcamo, . A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204: 1757–1764, 2007.
  • V. Cerovic, C.D. Jenkins, A.G. Barnes, . Hyporesponsiveness of intestinal dendritic cells to TLR stimulation is limited to TLR4. J Immunol 182: 2405–2415, 2009.
  • S. Uematsu, K. Fujimoto, M.H. Jang, . Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 9: 769–776, 2008.
  • K.R. Siddiqui and F. Powrie. CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol 1(Suppl 1): S34--S38, 2008.
  • B. Dubois, G. Joubert, M.G. de Aguero, . Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology 137: 1019–1028, 2009.
  • M. Iwata. Retinoic acid production by intestinal dendritic cells and its role in T-cell trafficking. Semin Immunol 21: 8–13, 2009.
  • R. Reifen, T. Nur, K. Ghebermeskel, . Vitamin A deficiency exacerbates inflammation in a rat model of colitis through activation of nuclear factor-kappaB and collagen formation. J Nutr 132: 2743–2747, 2002.
  • M. Iwata, A. Hirakiyama, Y. Eshima, . Retinoic acid imprints gut-homing specificity on T cells. Immunity 21: 527–538, 2004.
  • M. Svensson, B. Johansson-Lindbom, F. Zapata, . Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol 1: 38–48, 2008.
  • D. Mucida, Y. Park, G. Kim, . Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256–260, 2007.
  • S.G. Kang, H.W. Lim, O.M. Andrisani, . Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179: 3724–3733, 2007.
  • M.J. Benson, K. Pino-Lagos, M. Rosemblatt, and R.J. Noelle. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204: 1765–1774, 2007.
  • A. Yokota, H. Takeuchi, N. Maeda, . GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int Immunol 21: 361–377, 2009.
  • K. Suzuki and S. Fagarasan. How host-bacterial interactions lead to IgA synthesis in the gut. Trends Immunol 29: 523–531, 2008.
  • J. Rey, N. Garin, F. Spertini, and B. Corthesy. Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells. J Immunol 172: 3026–3033, 2004.
  • C. Mottet, H.H. Uhlig, and F. Powrie. Cutting edge: Cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 170: 3939–3943, 2003.
  • H. Groux, A. O'Garra, M. Bigler, . A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742, 1997.
  • Q. Tang, K.J. Henriksen, M. Bi, . In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199: 1455–1465, 2004.
  • K.V. Tarbell, S. Yamazaki, K. Olson, . CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 199: 1467–1477, 2004.
  • A.P. Kohm, P.A. Carpentier, H.A. Anger, and S.D. Miller. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169: 4712–4716, 2002.
  • M.E. Morgan, R. Flierman, L.M. van Duivenvoorde, . Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 52: 2212–2221, 2005.
  • K.J. Scalapino, Q. Tang, J.A. Bluestone, . Suppression of disease in New Zealand Black/New Zealand white lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol 177: 1451–1459, 2006.
  • J.D. Fontenot, M.A. Gavin, and A.Y. Rudensky. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336, 2003.
  • H.H. Uhlig, J. Coombes, C. Mottet, . Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol 177: 5852–5860, 2006.
  • S. Sakaguchi, M. Ono, R. Setoguchi, . Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212: 8–27, 2006.
  • M.G. Roncarolo, S. Gregori, M. Battaglia, . Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212: 28–50, 2006.
  • Y. Carrier, J. Yuan, V.K. Kuchroo, and H.L. Weiner. Th3 cells in peripheral tolerance. II. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity. J Immunol 178: 172–178, 2007.
  • S.F. Ziegler. FOXP3: Of mice and men. Annu Rev Immunol 24: 209–226, 2006.
  • D.A. Vignali, L.W. Collison, and C.J. Workman. How regulatory T cells work. Nat Rev Immunol 8: 523–532, 2008.
  • I.I. Ivanov, L. Zhou, and D.R. Littman. Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19: 409–417, 2007.
  • M.A. Curotto de Lafaille and J.J. Lafaille. Natural and adaptive Foxp3+ regulatory T cells: More of the same or a division of labor? Immunity 30: 626–635, 2009.
  • M. Battaglia and M.G. Roncarolo. The fate of human Treg cells. Immunity 30: 763–765, 2009.
  • M. Miyara, Y. Yoshioka, A. Kitoh, . Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3 transcription factor. Immunity 30: 899–911, 2009.
  • H.J. van der Vliet and E.E. Nieuwenhuis. IPEX as a result of mutations in Foxp3. Clin Dev Immunol 2007: 89017, 2007.
  • M.A. Burchill, J. Yang, C. Vogtenhuber, . IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178: 280–290, 2007.
  • M.C. Fantini, C. Becker, G. Monteleone, . Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172: 5149–5153, 2004.
  • S.Z. Josefowicz and A. Rudensky. Control of regulatory T cell lineage commitment and maintenance. Immunity 30: 616–625, 2009.
  • D. Mucida, N. Kutchukhidze, A. Erazo, . Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115: 1923–1933, 2005.
  • M.O. Li and R.A. Flavell. Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10. Immunity 28: 468–476, 2008.
  • H. Herfarth and J. Scholmerich. IL-10 therapy in Crohn's disease: At the crossroads. Treatment of Crohn's disease with the anti-inflammatory cytokine interleukin 10. Gut 50: 146–147, 2002.
  • R.N. Fedorak, A. Gangl, C.O. Elson, . Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn's disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119: 1473–1482, 2000.
  • S. Schreiber, R.N. Fedorak, O.H. Nielsen, . Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group. Gastroenterology 119: 1461–1472, 2000.
  • L. Steidler, W. Hans, L. Schotte, . Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355, 2000.
  • H. Braat, P. Rottiers, D.W. Hommes, . A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol 4: 754–759, 2006.
  • R. Kuhn, J. Lohler, D. Rennick, . Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274, 1993.
  • R.K. Sellon, S. Tonkonogy, M. Schultz, . Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66: 5224–5231, 1998.
  • A. Roers, L. Siewe, E. Strittmatter, . T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med 200: 1289–1297, 2004.
  • R.T. Gazzinelli, M. Wysocka, S. Hieny, . In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 157: 798–805, 1996.
  • P.L. Vieira, J.R. Christensen, S. Minaee, . IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol 172: 5986–5993, 2004.
  • Y.P. Rubtsov, J.P. Rasmussen, E.Y. Chi, . Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28: 546–558, 2008.
  • A.B. Kulkarni, C.G. Huh, D. Becker, . Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90: 770–774, 1993.
  • L. Gorelik and R.A. Flavell. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12: 171–181, 2000.
  • M.O. Li, S. Sanjabi, and R.A. Flavell. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25: 455–471, 2006.
  • J.C. Marie, J.J. Letterio, M. Gavin, and A.Y. Rudensky. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 201: 1061–1067, 2005.
  • M.M. Shull, I. Ormsby, A.B. Kier, . Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359: 693–699, 1992.
  • E.M. Shevach. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity 30: 636–645, 2009.
  • Y. Onishi, Z. Fehervari, T. Yamaguchi, and S. Sakaguchi. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105: 10113–10118, 2008.
  • K. Wing, Y. Onishi, P. Prieto-Martin, . CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271–275, 2008.
  • S. Read, R. Greenwald, A. Izcue, . Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol 177: 4376–4383, 2006.
  • B. Liang, C. Workman, J. Lee, . Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180: 5916–5926, 2008.
  • L. Zhou, J.E. Lopes, M.M. Chong, . TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453: 236–240, 2008.
  • L. Steinman. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13: 139–145, 2007.
  • K. Ichiyama, H. Yoshida, Y. Wakabayashi, . Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283: 17003–17008, 2008.
  • L. Zhou, I.I. Ivanov, R. Spolski, . IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8: 967–974, 2007.
  • A. Laurence, C.M. Tato, T.S. Davidson, . Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26: 371–381, 2007.
  • B. Jabri and L.M. Sollid. Mechanisms of disease: Immunopathogenesis of celiac disease. Nat Clin Pract Gastroenterol Hepatol 3: 516–525, 2006.
  • A.M. Mowat. Coeliac disease—A meeting point for genetics, immunology, and protein chemistry. Lancet 361: 1290–1292, 2003.
  • L.M. Sollid. Coeliac disease: Dissecting a complex inflammatory disorder. Nat Rev Immunol 2: 647–655, 2002.
  • M.F. Kagnoff. Celiac disease: Pathogenesis of a model immunogenetic disease. J Clin Invest 117: 41–49, 2007.
  • O. Molberg, S.N. McAdam, R. Korner, . Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4: 713–717, 1998.
  • Y. van de Wal, Y. Kooy, P. van Veelen, . Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 161: 1585–1588, 1998.
  • O. Vaarala. Leaking gut in type 1 diabetes. Curr Opin Gastroenterol 24:701–706, 2008.
  • H.K. Akerblom and M. Knip. Putative environmental factors in Type 1 diabetes. Diabetes Metab Rev 14: 31–67, 1998.
  • D.L. Coleman, J.E. Kuzava, and E.H. Leiter. Effect of diet on incidence of diabetes in nonobese diabetic mice. Diabetes 39: 432–436, 1990.
  • F.W. Scott. Food-induced type 1 diabetes in the BB rat. Diabetes Metab Rev 12: 341–359, 1996.
  • A.J. MacFarlane, K.M. Burghardt, J. Kelly, . A type 1 diabetes-related protein from wheat (Triticum aestivum). cDNA clone of a wheat storage globulin, Glb1, linked to islet damage. J Biol Chem 278: 54–63, 2003.
  • F. Maurano, G. Mazzarella, D. Luongo, . Small intestinal enteropathy in non-obese diabetic mice fed a diet containing wheat. Diabetologia 48: 931–937, 2005.
  • P.E. Beales, R.B. Elliott, S. Flohe, . A multi-centre, blinded international trial of the effect of A(1) and A(2) beta-casein variants on diabetes incidence in two rodent models of spontaneous Type I diabetes. Diabetologia 45: 1240–1246, 2002.
  • W. Karges, D. Hammond-McKibben, R.K. Cheung, . Immunological aspects of nutritional diabetes prevention in NOD mice: A pilot study for the cow's milk-based IDDM prevention trial. Diabetes 46: 557–564, 1997.
  • J.P. Mordes, R. Bortell, E.P. Blankenhorn, . Rat models of type 1 diabetes: Genetics, environment, and autoimmunity. Ilar J 45: 278–291, 2004.
  • R.H. Wallis, K. Wang, L. Marandi, . Type 1 diabetes in the BB rat: A polygenic disease. Diabetes 58: 1007–1017, 2009.
  • M.J. Hessner, X. Wang, L. Meyer, . Involvement of eotaxin, eosinophils, and pancreatic predisposition in development of type 1 diabetes mellitus in the BioBreeding rat. J Immunol 173: 6993–7002, 2004.
  • P. Courtois, G. Nsimba, H. Jijakli, . Gut permeability and intestinal mucins, invertase, and peroxidase in control and diabetes-prone BB rats fed either a protective or a diabetogenic diet. Dig Dis Sci 50: 266–275, 2005.
  • S. Graham, P. Courtois, W.J. Malaisse, . Enteropathy precedes type 1 diabetes in the BB rat. Gut 53: 1437–1444, 2004.
  • J.B. Meddings, J. Jarand, S.J. Urbanski, . Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol 276: G951–G957, 1999.
  • T. Watts, I. Berti, A. Sapone, . Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 102: 2916–2921, 2005.
  • H. Chakir, D.E. Lefebvre, H. Wang, . Wheat protein-induced proinflammatory T helper 1 bias in mesenteric lymph nodes of young diabetes-prone rats. Diabetologia 48: 1576–1584, 2005.
  • F.W. Scott, P. Rowsell, G.S. Wang, . Oral exposure to diabetes-promoting food or immunomodulators in neonates alters gut cytokines and diabetes. Diabetes 51: 73–78, 2002.
  • R.A. Caicedo, N. Li, C. Des Robert, . Neonatal formula feeding leads to immunological alterations in an animal model of type 1 diabetes. Pediatr Res 63: 303–307, 2008.
  • J. Hoorfar, K. Buschard, and F. Dagnaes-Hansen. Prophylactic nutritional modification of the incidence of diabetes in autoimmune non-obese diabetic (NOD) mice. Br J Nutr 69: 597–607, 1993.
  • S.B. Flohe, H.E. Wasmuth, J.B. Kerad, . A wheat-based, diabetes-promoting diet induces a Th1-type cytokine bias in the gut of NOD mice. Cytokine 21: 149–154, 2003.
  • E. Bosi, L. Molteni, M.G. Radaelli, . Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49: 2824–2827, 2006.
  • M. Westerholm-Ormio, O. Vaarala, P. Pihkala, . Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. Diabetes 52: 2287–2295, 2003.
  • R. Auricchio, F. Paparo, M. Maglio, . In vitro-deranged intestinal immune response to gliadin in type 1 diabetes. Diabetes 53: 1680–1683, 2004.
  • J. Honkanen, S. Skarsvik, M. Knip, and O. Vaarala. Poor in vitro induction of FOXP3 and ICOS in type 1 cytokine environment activated T-cells from children with type 1 diabetes. Diabetes Metab Res Rev 24: 635–641, 2008.
  • T. Vorobjova, O. Uibo, K. Heilman, . Increased FOXP3 expression in small-bowel mucosa of children with coeliac disease and type I diabetes mellitus. Scand J Gastroenterol 44: 422–430, 2009.
  • A.G. Ziegler, S. Schmid, D. Huber, . Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290: 1721–1728, 2003.
  • M. Fuchtenbusch, A.G. Ziegler, and M. Hummel. Elimination of dietary gluten and development of type 1 diabetes in high risk subjects. Rev Diabet Stud 1: 39–41, 2004.
  • M.R. Pastore, E. Bazzigaluppi, C. Belloni, . Six months of gluten-free diet do not influence autoantibody titers, but improve insulin secretion in subjects at high risk for type 1 diabetes. J Clin Endocrinol Metab 88: 162–165, 2003.
  • J.M. Norris, K. Barriga, G. Klingensmith, . Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290: 1713–1720, 2003.
  • M. Mojibian, H. Chakir, A.J. MacFarlane, . Immune reactivity to a glb1 homologue in a highly wheat-sensitive patient with type 1 diabetes and celiac disease. Diabetes Care 29: 1108–1110, 2006.
  • S.J. Turley, J.W. Lee, N. Dutton-Swain, . Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc Natl Acad Sci U S A 102: 17729–17733, 2005.
  • M. Ejsing-Duun, J. Josephsen, B. Aasted, . Dietary gluten reduces the number of intestinal regulatory T cells in mice. Scand J Immunol 67: 553–559, 2008.
  • T.M. Brusko, C.H. Wasserfall, M.J. Clare-Salzler, . Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414, 2005.
  • S. Lindley, C.M. Dayan, A. Bishop, . Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54: 92–99, 2005.
  • A. Kukreja, G. Cost, J. Marker, . Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109: 131–140, 2002.
  • S. Paust and H. Cantor. Regulatory T cells and autoimmune disease. Immunol Rev 204: 195–207, 2005.
  • D. Lundsgaard, T.L. Holm, L. Hornum, and H. Markholst. In vivo control of diabetogenic T-cells by regulatory CD4+CD25+ T-cells expressing Foxp3. Diabetes 54: 1040–1047, 2005.
  • J. Visser, J.L. Hillebrands, M. Walther Boer, . Prevention of diabetes by a hydrolysed casein-based diet in diabetes-prone BioBreeding rats does not involve restoration of the defective natural regulatory T cell function. Diabetologia 52: 1445–1447, 2009.
  • K. Luopajarvi, E. Savilahti, S.M. Virtanen, . Enhanced levels of cow's milk antibodies in infancy in children who develop type 1 diabetes later in childhood. Pediatr Diabetes 9: 434–441, 2008.
  • J. Lempainen, O. Vaarala, M. Makela, . Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. J Autoimmun 33: 155–164, 2009.
  • E. Savilahti and K.M. Saarinen. Early infant feeding and type 1 diabetes. Eur J Nutr 48: 243–249, 2009.
  • O. Vaarala. Is it dietary insulin? Ann N Y Acad Sci 1079: 350–359, 2006.
  • M. Makela, O. Vaarala, R. Hermann, . Enteral virus infections in early childhood and an enhanced type 1 diabetes-associated antibody response to dietary insulin. J Autoimmun 27: 54–61, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.