495
Views
54
CrossRef citations to date
0
Altmetric
Immunity in the Gut

Oral Vaccine Delivery by Recombinant Spore Probiotics

, , &
Pages 487-505 | Published online: 02 Dec 2009

REFERENCES

  • D. Fritze. Taxonomy and systematics of the aerobic endospore forming bacteria: Bacillus and related genera. In: E. Ricca, A. O. Henriques, and S. M. Cutting ( Eds.), Bacterial Spore Formers. Norfolk, UK: Horizon Biosience, pp. 17–34, 2004.
  • A.O. Henriques and C.P. Moran, Jr. Structure, assembly, and function of the spore surface layers. Ann Rev Microbiol 61: 555–588, 2007.
  • L.A. Klobutcher, K. Ragkousi, and P. Setlow. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila. Proc Natl Acad Sci U S A 103: 165–170, 2006.
  • S.W. Jones, C.J. Paredes, B. Tracy, . The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9: 114, 2008.
  • C.J. Paredes, K.V. Alsaker, and E.T. Papoutsakis. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3: 969–978, 2005.
  • A. Moir. How do spores germinate? J Appl Microbiol 101: 526–530, 2006.
  • C. Aguilar, H. Vlamakis, R. Losick, and R. Kolter. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10: 638–643, 2007.
  • L. Kroos. The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41: 13–39, 2007.
  • P. Setlow. I will survive: DNA protection in bacterial spores. Trends Microbiol 15: 172–180, 2007.
  • W.L. Nicholson. Roles of Bacillus endospores in the environment. Cell & Molec Life Sci 59: 410–416, 2002.
  • A.H. Hong, E. To, S. Fakhry, . Defining the natural habitat of Bacillus spore-formers. Res. Microbiol. (in press), 2009.
  • E.R. Angert and R. Losick. Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc Natl Acad Sci U S A 95: 10218–10223, 1998.
  • M.R. Spinosa, T. Braccini, E. Ricca, . On the fate of ingested Bacillus spores. Res Microbiol 151: 361–368, 2000.
  • T.M. Barbosa, C.R. Serra, R.M. La Ragione, . Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71: 968–978, 2005.
  • J.K. Mathers, H. Smith, and S. Carter. Dose-response effects of raw potato starch on small-intestinal escape, large-bowel fermentation and gut transit time in the rat. Br J Nutr 78: 1015–1029, 1997.
  • S. Fakhry, I. Sorrentini, E. Ricca, . Characterisation of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 105: 2178–2186, 2008.
  • H.A. Hong, R. Khaneja, N.M. Tam, . Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160: 134–143, 2009.
  • N.-T. Hoa, L. Baccigalupi, A. Huxham, . Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol 66: 5241–5247, 2000.
  • P. Youngman, J.B. Perkins, and R. Losick. A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertion. Mol Gen Genet 195: 424–433, 1984.
  • T.-T. Hoa, L.H. Duc, R. Isticato, . Fate and dissemination of Bacillus subtilis spores in a murine model. Appl Environ Microbiol 67: 3819–3823, 2001.
  • G. Casula and S.M. Cutting. Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl Environ Microbiol 68: 2344–2352, 2002.
  • N.K. Tam, N.Q. Uyen, H.A. Hong, . The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188: 2692–2700, 2006.
  • M.M. Nakano and P. Zuber. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 52: 165–190, 1998.
  • L. Margulis, J.Z. Jorgensen, S. Dolan, . The Arthromitus stage of Bacillus cereus: Intestinal symbionts of animals. Proc Natl Acad Sci U S A 95: 1236–1241, 1998.
  • L. Feinberg, J. Jorgensen, A. Haselton, . Arthromitus (Bacillus cereus) symbionts in the cockroach Blaberus giganteus: Dietary influences on bacterial development and population density. Symbiosis 27: 109–123, 1999.
  • A. Jadamus, W. Vahjen, and O. Simon. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets. Arch Tierernahr 54: 1–17, 2001.
  • A. Jadamus, W. Vahjen, K. Schafer, and O. Simon. Influence of the probiotic strain Bacillus cereus var. toyoi on the development of enterobacterial growth and on selected parameters of bacterial metabolism in digested samples of piglets. J Anim Physiol Anim Nutr (Berl) 86: 42–54, 2002.
  • L.H. Duc, A.H. Hong, Q.U. Nguyen, and S.M. Cutting. Intracellular fate and immunogenicity of B. subtilis spores. Vaccine 22: 1873–1885, 2004.
  • M. Ceragioli, G. Cangiano, S. Esin, . Phagocytosis, germination and killing of Bacillus subtilis spores presenting heterologous antigens in human macrophages. Microbiology 155: 338–346, 2009.
  • R.W. Stokes and D. Doxsee. The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: A comparison with human monocyte-derived macrophages. Cell Immunol 197: 1–9, 1999.
  • H. Hu, Q. Sa, T.M. Koehler, . Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell Microbiol 8: 1634–1642, 2006.
  • P. Rajavelu and S.D. Das. A correlation between phagocytosis and apoptosis in THP-1 cells infected with prevalent strains of Mycobacterium tuberculosis. Microbiol Immunol 51: 201–210, 2007.
  • M.T. McKevitt, K.M. Bryant, S.M. Shakir, . Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun 75: 5726–5734, 2007.
  • M. Anmuth, J. Harding, E. Kravitz, and R.L. Stedman. Autoinhibition of bacterial endospore germination. Science 124: 403–405, 1956.
  • S. Rakoff-Nahoum and R. Medzhitov. Role of the innate immune system and host-commensal mutualism. Curr Top Microbiol Immunol 308: 1–18, 2006.
  • B.L. Bassler and R. Losick. Bacterially speaking. Cell 125: 237–246, 2006.
  • M. Fujita, M.W. Musch, Y. Nakagawa, . The Bacillus subtilis quorum-sensing molecule CSF contribute to intestinal homoestasis via OCTN2, a host cell membrane transporter. Cell Host & Microb 1: 299–308, 2007.
  • V.V. Kravchenko, G.F. Kaufmann, J.C. Mathison, . N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. J Biol Chem 281: 28822–28830, 2006.
  • K.-J. Rhee, P. Sethupathi, A. Driks, . Role of commensal bacteria in development of gut-associated lymphoid tissue and preimmune antibody repertoire. J Immunol 172: 1118–1124, 2004.
  • L.H. Duc, H.A. Hong, N. Fairweather, . Bacterial spores as vaccine vehicles. Infect Immun 71: 2810–2818, 2003.
  • T. Hosoi, R. Hirose, S. Saegusa, . Cytokine responses of human intestinal epithelial-like Caco-2 cells to the nonpathogenic bacterium Bacillus subtilis (natto). Int J Food Microbiol 82: 255–264, 2003.
  • J.-M. Huang, R. La Ragione, A. Nunez, and S.M. Cutting. Immunostimulatory activity of Bacillus spores. FEMS Immunol Med Microbiol 53: 195–203, 2008.
  • R. D'Arienzo, F. Maurano, G. Mazzarella, . Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. Res Microbiol 157: 891–897, 2006.
  • D.B. Schauer and S. Falkow. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasia. Infect Immun 61: 4654–4661, 1993.
  • L.M. Higgins, G. Frankel, G. Douce, . Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect Immun 67: 3031–3039, 1999.
  • R.M. La Ragione and M.J. Woodward. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet Microbiol 94: 245–256, 2003.
  • R.M. La Ragione, G. Casula, S.M. Cutting, and M.J. Woodward. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Vet Microbiol 79: 113–142, 2001.
  • S.Y. Lee, J.H. Choi, and Z. Xu. Microbial cell-surface display. Trends Biotechnol 21: 45–52, 2003.
  • T.N. Nguyen, M.H. Gourdon, M. Hansson, . Hydrophobicity engineering to facilitate surface display of heterologous gene products on Staphylococcus xylosus. J Biotechnol 42: 207–219, 1995.
  • R. Isticato, G. Cangiano, H.T. Tran, . Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183: 6294–6301, 2001.
  • E.M.F. Mauriello, L.H. Duc, R. Isticato, . Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22: 1177–1187, 2004.
  • R. Isticato, G. Cangiano, M. De Felice, and E. Ricca. Display of molecules on the spore surface. In: E. Ricca, A. O. Henriques, and S. M. Cutting (Eds.). Bacterial Spore Formers. Norfolk, UK: Horizon Biosience, pp. 193–200, 2004.
  • R. Isticato, G. Esposito, R. Zilhão, . Assembly of Multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186: 1129–1135, 2004.
  • R. Zilhao, M. Serrano, R. Isticato, . Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J Bacteriol 186: 1110–1119, 2004.
  • L.-H. Duc, H.A. Hong, H.S. Atkins, . Cutting, immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25: 346–355, 2007.
  • T.H. Hoang, H.A. Hong, G.C. Clark, . Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infec Immun 76: 5257–5265, 2008.
  • Z. Zhou, H. Xia, X. Hu, . Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26: 1817–1825, 2008.
  • R. Isticato, D. Scotto Di Mase, E.M.F. Mauriello, . Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system. BioTechniques 42: 151–156, 2007.
  • L.H. Duc, H.A. Hong, and S.M. Cutting. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine. 21: 4215–4224, 2003.
  • J.D. Paccez, H.D. Nguyen, W.B. Luiz, . Evaluation of different promoter sequences and antigen sorting signals on the immunogenicity of Bacillus subtilis vaccine vehicles. Vaccine 25: 4671–4680, 2007.
  • N.Q. Uyen, H.A. Hong, and S.M. Cutting. Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine 25: 356–365, 2007.
  • J.M. Huang, R.M. La Ragione, W. A. Cooley, . Cytoplasmic delivery of antigens by Bacillus subtilis enhances Th1 responses. Vaccine 26: 6043–6052, 2008.
  • A. Ciabattini, R. Parigi, R. Isticato, . Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine 22: 4139–4143, 2004.
  • L.H. Yu and S.M. Cutting. The effect of anti-spore antibody responses on the use of spores for vaccine delivery. Vaccine 27: 4576–4584, 2009.
  • E.M.F. Mauriello, G. Cangiano, F. Maurano, . Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 25: 788–793, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.