156
Views
9
CrossRef citations to date
0
Altmetric
Research Article

The Tug-of-War between Dendritic Cells and Human Chronic Viruses

, &
Pages 341-365 | Published online: 07 Nov 2011

REFERENCES

  • O'Doherty U, Peng M, Gezelter S, Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 1994;82:487–493.
  • Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol 2005;17:273–283.
  • van Der Aar AM, Sylva-Steenland RM, Bos JD, Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol 2007;178:1986–1990.
  • Flacher V, Bouschbacher M, Verronese E, Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 2006;177:7959–7967.
  • Klechevsky E, Liu M, Morita R, Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum Immunol 2009;70:281–288.
  • Klechevsky E, Morita R, Liu M, Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008;29:497–510.
  • Dzionek A, Fuchs A, Schmidt P, BDCA-2, BDCA-3, and BDCA-4: Three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000;165:6037–6046.
  • Dzionek A, Sohma Y, Nagafune J, BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J Exp Med 2001;194:1823–1834.
  • Cao W, Rosen DB, Ito T, Plasmacytoid dendritic cell-specific receptor ILT7-Fc epsilonRI gamma inhibits Toll-like receptor-induced interferon production. J Exp Med 2006;203:1399–1405.
  • Siegal FP, Kadowaki N, Shodell M, The nature of the principal type 1 interferon-producing cells in human blood. Science 1999;284:1835–1837.
  • Megjugorac NJ, Young HA, Amrute SB, Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. J Leukoc Biol 2004;75:504–514.
  • Penna G, Vulcano M, Roncari A, Cutting edge: Differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 2002;169:6673–6676.
  • Penna G, Vulcano M, Sozzani S, Adorini L. Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells. Hum Immunol 2002;63:1164–1171.
  • Jego G, Palucka AK, Blanck JP, Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003;19:225–234.
  • Fonteneau JF, Gilliet M, Larsson M, Activation of influenza virus-specific CD4+ and CD8+ T cells: A new role for plasmacytoid dendritic cells in adaptive immunity. Blood 2003;101:3520–3526.
  • Di Pucchio T, Chatterjee B, Smed-Sorensen A, Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol 2008;9:551–557.
  • Matsui T, Connolly JE, Michnevitz M, CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 2009;182:6815–6823.
  • Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: Infection and viral dissemination. Nat Rev Immunol 2006;6:859–868.
  • Patterson S, Rae A, Hockey N, Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virology 2001;75:6710–6713.
  • Canque B, Bakri Y, Camus S, The susceptibility to X4 and R5 human immunodeficiency virus-1 strains of dendritic cells derived in vitro from CD34(+) hematopoietic progenitor cells is primarily determined by their maturation stage. Blood 1999;93:3866–3875.
  • Groot F, van Capel TM, Kapsenberg ML, Opposing roles of blood myeloid and plasmacytoid dendritic cells in HIV-1 infection of T cells: Transmission facilitation versus replication inhibition. Blood 2006;108:1957–1964.
  • de Witte L, Nabatov A, Pion M, Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 2007;13:367–371.
  • Fahrbach KM, Barry SM, Ayehunie S, Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virology 2007;81:6858–6868.
  • Dong C, Janas AM, Wang JH, Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virology 2007;81:11352–11362.
  • McDonald D, Wu L, Bohks SM, Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 2003;300:1295–1297.
  • Wang JH, Janas AM, Olson WJ, Wu L. Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virology 2007;81:8933–8943.
  • Garcia E, Nikolic DS, Piguet V. HIV-1 replication in dendritic cells occurs through a tetraspanin-containing compartment enriched in AP-3. Traffic 2008;9:200–214.
  • Janas AM, Dong C, Wang JH, Wu L. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry. Virology 2008;375:442–451.
  • Chougnet C, Gessani S. Role of gp120 in dendritic cell dysfunction in HIV infection. J Leukoc Biol 2006;80:994–1000.
  • Keele BF, Tazi L, Gartner S, Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J Virology 2008;82:5548–5561.
  • Otero M, Nunnari G, Leto D, Peripheral blood dendritic cells are not a major reservoir for HIV type 1 in infected individuals on virally suppressive HAART. AIDS Res Hum Retrovir 2003;19:1097–1103.
  • Haase AT, Henry K, Zupancic M, Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 1996;274:985–989.
  • Meyers JH, Justement JS, Hallahan CW, Impact of HIV on cell survival and antiviral activity of plasmacytoid dendritic cells. PLoS One 2007;2:e458.
  • Muthumani K, Hwang DS, Choo AY, HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 2005;17:103–116.
  • Quaranta MG, Mattioli B, Giordani L, Viora M. The immunoregulatory effects of HIV-1 Nef on dendritic cells and the pathogenesis of AIDS. Faseb J 2006;20:2198–2208.
  • Lopez C, Fitzgerald PA, Siegal FP. Severe acquired immune deficiency syndrome in male homosexuals: Diminished capacity to make interferon-alpha in vitro associated with severe opportunistic infections. J Infect Dis 1983;148:962–966.
  • Siegal FP, Lopez C, Fitzgerald PA, Opportunistic infections in acquired immune deficiency syndrome result from synergistic defects of both the natural and adaptive components of cellular immunity. J Clin Invest 1986;78:115–123.
  • Howell DM, Feldman SB, Kloser P, Fitzgerald-Bocarsly P. Decreased frequency of functional natural interferon-producing cells in peripheral blood of patients with the acquired immune deficiency syndrome. Clin Immunol Immunopathol 1994;71:223–230.
  • Donaghy H, Pozniak A, Gazzard B, Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 2001;98:2574–2576.
  • Feldman S, Stein D, Amrute S, Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 2001;101:201–210.
  • Pacanowski J, Kahi S, Baillet M, Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 2001;98:3016–3021.
  • Soumelis V, Scott I, Gheyas F, Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 2001;98:906–912.
  • Boasso A, Herbeuval JP, Hardy AW, HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 2007;109:3351–3359.
  • Manches O, Munn D, Fallahi A, HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 2008;118:3431–3439.
  • Martinson JA, Roman-Gonzalez A, Tenorio AR, Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol 2007;250:75–84.
  • Tilton JC, Manion MM, Luskin MR, Human immunodeficiency virus viremia induces plasmacytoid dendritic cell activation in vivo and diminished alpha interferon production in vitro. J Virology 2008;82:3997–4006.
  • Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 2003;101:4505–4511.
  • Dillon SM, Robertson KB, Pan SC, Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lymphoid tissue during asymptomatic chronic HIV-1 infection. J Acquir Immune Defic Syndr 2008;48:1–12.
  • Bednarik DP, Mosca JD, Raj NB, Pitha PM. Inhibition of human immunodeficiency virus (HIV) replication by HIV-trans-activated alpha 2-interferon. Proc Natl Acad Sci U S A 1989;86:4958–4962.
  • Gendelman HE, Baca LM, Turpin J, Regulation of HIV replication in infected monocytes by IFN-alpha. Mechanisms for viral restriction. J Immunol 1990;145:2669–2676.
  • Shirazi Y, Pitha PM. Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J Virology 1992;66:1321–1328.
  • Poli G, Orenstein JM, Kinter A, Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 1989;244:575–577.
  • Vieillard V, Jouveshomme S, Leflour N, Transfer of human CD4(+) T lymphocytes producing beta interferon in Hu-PBL-SCID mice controls human immunodeficiency virus infection. J Virology 1999;73:10281–10288.
  • Lapenta C, Santini SM, Proietti E, Type I interferon is a powerful inhibitor of in vivo HIV-1 infection and preserves human CD4(+) T cells from virus-induced depletion in SCID mice transplanted with human cells. Virology 1999;263:78–88.
  • Lum JJ, Pilon AA, Sanchez-Dardon J, Induction of cell death in human immunodeficiency virus-infected macrophages and resting memory CD4 T cells by TRAIL/Apo2l. J Virology 2001;75:11128–11136.
  • Herbeuval JP, Boasso A, Grivel JC, TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected patients and its in vitro production by antigen-presenting cells. Blood 2005;105:2458–2464.
  • Miura Y, Misawa N, Maeda N, Critical contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to apoptosis of human CD4+ T cells in HIV-1-infected hu-PBL-NOD-SCID mice. J Exp Med 2001;193:651–660.
  • Lichtner M, Maranon C, Vidalain PO, HIV type 1-infected dendritic cells induce apoptotic death in infected and uninfected primary CD4 T lymphocytes. AIDS Res Hum Retrovir 2004;20:175–182.
  • Geijtenbeek TB, Kwon DS, Torensma R, DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000;100:587–597.
  • Geijtenbeek TB, Torensma R, van Vliet SJ, Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000;100:575–585.
  • Granelli-Piperno A, Pritsker A, Pack M, Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 2005;175:4265–4273.
  • Trumpfheller C, Park CG, Finke J, Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 2003;15:289–298.
  • Wu L, Bashirova AA, Martin TD, Rhesus macaque dendritic cells efficiently transmit primate lentiviruses independently of DC-SIGN. Proc Natl Acad Sci U S A 2002;99:1568–1573.
  • Wu L, Martin TD, Vazeux R, Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission. J Virology 2002;76:5905–5914.
  • Baribaud F, Pohlmann S, Leslie G, Quantitative expression and virus transmission analysis of DC-SIGN on monocyte-derived dendritic cells. J Virology 2002;76:9135–9142.
  • Gummuluru S, Rogel M, Stamatatos L, Emerman M. Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virology 2003;77:12865–12874.
  • Soilleux EJ, Morris LS, Leslie G, Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 2002;71:445–457.
  • Krutzik SR, Tan B, Li H, TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 2005;11:653–660.
  • Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol 2003;33:483–493.
  • Chehimi J, Luo Q, Azzoni L, HIV-1 transmission and cytokine-induced expression of DC-SIGN in human monocyte-derived macrophages. J Leukoc Biol 2003;74:757–763.
  • Soilleux EJ, Morris LS, Lee B, Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J Pathol 2001;195:586–592.
  • Jameson B, Baribaud F, Pohlmann S, Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virology 2002;76:1866–1875.
  • Engering A, van Vliet SJ, Hebeda K, Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol 2004;164:1587–1595.
  • Soilleux EJ, Coleman N. Langerhans cells and the cells of Langerhans cell histiocytosis do not express DC-SIGN. Blood 2001;98:1987–1988.
  • Poiesz BJ, Ruscetti FW, Gazdar AF, Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 1980;77:7415–7419.
  • Poiesz BJ, Ruscetti FW, Reitz MW, Isolation of a new type C retrovirus (HTLV) in primary uncultured cells of a patient with Sezary T-cell leukaemia. Nature 1981;294:268–271.
  • Gallo RC. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2005; 2:17.
  • Gallo RC. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene 2005;24:5926–5930.
  • Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene 2005;24:6058–6068.
  • Kaplan JE, Osame M, Kubota H, The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 1990;3:1096–1101.
  • Murphy EL, Hanchard B, Figueroa JP, Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Intl J Cancer 1989;43:250–253.
  • Ohshima K. Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci 2007;98:772–778.
  • Uchiyama T, Yodoi J, Sagawa K, Adult T-cell leukemia: Clinical and hematologic features of 16 cases. Blood 1977;50:481–492.
  • Osame M, Usuku K, Izumo S, HTLV-I associated myelopathy, a new clinical entity. Lancet 1986;1:1031–1032.
  • Ali A, Patterson S, Cruickshank K, Dendritic cells infected in vitro with human T cell leukaemia/lymphoma virus type-1 (HTLV-1); enhanced lymphocytic proliferation and tropical spastic paraparesis. Clin Exp Immunol 1993;94:32–37.
  • Makino M, Wakamatsu S, Shimokubo S, Production of functionally deficient dendritic cells from HTLV-I-infected monocytes: Implications for the dendritic cell defect in adult T cell leukemia. Virology 2000;274:140–148.
  • Hishizawa M, Imada K, Kitawaki T, Depletion and impaired interferon-alpha-producing capacity of blood plasmacytoid dendritic cells in human T-cell leukaemia virus type I-infected individuals. Br J Haematol 2004;125:568–575.
  • Makino M, Utsunomiya A, Maeda Y, Association of CD40 ligand expression on HTLV-I-infected T cells and maturation of dendritic cells. Scand J Immunol 2001;54:574–581.
  • Macatonia SE, Cruickshank JK, Rudge P, Knight SC. Dendritic cells from patients with tropical spastic paraparesis are infected with HTLV-1 and stimulate autologous lymphocyte proliferation. AIDS Res Hum Retrovir 1992;8:1699–1706.
  • Makino M, Shimokubo S, Wakamatsu SI, The role of human T-lymphotropic virus type 1 (HTLV-1)-infected dendritic cells in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis. J Virology 1999;73:4575–4581.
  • Jones KS, Petrow-Sadowski C, Huang YK, Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008;14:429–436.
  • Jain P, Manuel SL, Khan ZK, DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virology 2009;83:10908–10921.
  • Mostoller K, Norbury CC, Jain P, Wigdahl B. Human T-cell leukemia virus type I Tax induces the expression of dendritic cell markers associated with maturation and activation. J Neurovirol 2004;10:358–371.
  • Jain P, Ahuja J, Khan ZK, Modulation of dendritic cell maturation and function by the Tax protein of human T cell leukemia virus type 1. J Leukoc Biol 2007;82:44–56.
  • Ahuja J, Kampani K, Datta S, Use of human antigen presenting cell gene array profiling to examine the effect of human T-cell leukemia virus type 1 Tax on primary human dendritic cells. J Neurovirol 2006;12:47–59.
  • Ahuja J, Lepoutre V, Wigdahl B, Induction of pro-inflammatory cytokines by human T-cell leukemia virus type-1 Tax protein as determined by multiplexed cytokine protein array analyses of human dendritic cells. Biomed Pharmacother 2007;61:1–8.
  • Yamano Y, Cohen CJ, Takenouchi N, Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11–19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+ CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J Exp Med 2004;199:1367–1377.
  • Manuel SL, Schell TD, Acheampong E, Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: The underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009;86:1205–1216.
  • Rahman S, Manuel SL, Khan ZK, Depletion of dendritic cells enhances susceptibility to cell-free infection of human T cell leukemia virus type 1 in CD11c-diphtheria toxin receptor transgenic mice. J Immunol 2010;184:5553–5561.
  • Rahman S, Khan ZK, Wigdahl B, Murine FLT3 ligand-derived dendritic cell-mediated early immune responses are critical to controlling cell-free human T cell leukemia virus type 1 infection. J Immunol 2011;186:390–402.
  • Colisson R, Barblu L, Gras C, Free HTLV-1 induces TLR7-dependent innate immune response and TRAIL relocalization in killer plasmacytoid dendritic cells. Blood 2010;115:2177–2185.
  • Clarke SR. The critical role of CD40/CD40L in the CD4-dependent generation of CD8+ T cell immunity. J Leukoc Biol 2000;67:607–614.
  • Harhaj NS, Janic B, Ramos JC, Deregulated expression of CD40 ligand in HTLV-I infection: Distinct mechanisms of downregulation in HTLV-I-transformed cell lines and ATL patients. Virology 2007;362:99–108.
  • Ganem D, Prince AM. Hepatitis B virus infection—Natural history and clinical consequences. N Engl J Med 2004;350:1118–1129.
  • Lauer GM, Walker BD. Hepatitis C virus infection. N Engl J Med 2001;345:41–52.
  • Lavanchy D. Chronic viral hepatitis as a public health issue in the world. Best Pract Res Clin Gastroenterol 2008;22:991–1008.
  • Beckebaum S, Cicinnati VR, Dworacki G, Reduction in the circulating pDC1/pDC2 ratio and impaired function of ex vivo-generated DC1 in chronic hepatitis B infection. Clin Immunol 2002;104:138–150.
  • Duan XZ, Wang M, Li HW, Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans. J Clin Immunol 2004;24:637–646.
  • Tavakoli S, Mederacke I, Herzog-Hauff S, Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection. Clin Exp Immunol 2008;151:61–70.
  • Van Der Molen RG, Sprengers D, Biesta PJ, Favorable effect of adefovir on the number and functionality of myeloid dendritic cells of patients with chronic HBV. Hepatology 2006;44:907–914.
  • Van Der Molen RG, Sprengers D, Binda RS, Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology 2004;40:738–746.
  • Zhang Z, Chen D, Yao J, Increased infiltration of intrahepatic DC subsets closely correlate with viral control and liver injury in immune active pediatric patients with chronic hepatitis B. Clin Immunol 2007;122:173–180.
  • Zhang Z, Zhang H, Chen D, Response to interferon-alpha treatment correlates with recovery of blood plasmacytoid dendritic cells in children with chronic hepatitis B. J Hepatology 2007;47:751–759.
  • Kunitani H, Shimizu Y, Murata H, Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients with chronic liver diseases. J Hepatology 2002;36:734–741.
  • Wang K, Fan X, Fan Y, Study on the function of circulating plasmacytoid dendritic cells in the immunoactive phase of patients with chronic genotype B and C HBV infection. J Viral Hepat 2007;14:276–282.
  • Chen L, Zhang Z, Chen W, B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J Immunol 2007;178:6634–6641.
  • Miyazaki M, Kanto T, Inoue M, Impaired cytokine response in myeloid dendritic cells in chronic hepatitis C virus infection regardless of enhanced expression of Toll-like receptors and retinoic acid inducible gene-I. J Med Virol 2008;80:980–988.
  • Zheng BJ, Zhou J, Qu D, Selective functional deficit in dendritic cell—T cell interaction is a crucial mechanism in chronic hepatitis B virus infection. J Viral Hepat 2004;11:217–224.
  • Xie Q, Shen HC, Jia NN, Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9. Microbes Infect 2009;11:515–523.
  • Christen V, Duong F, Bernsmeier C, Inhibition of alpha interferon signaling by hepatitis B virus. J Virology 2007;81:159–165.
  • Wu M, Xu Y, Lin S, Hepatitis B virus polymerase inhibits the interferon-inducible MyD88 promoter by blocking nuclear translocation of Stat1. J Gen Virol 2007;88:3260–3269.
  • Beckebaum S, Cicinnati VR, Zhang X, Hepatitis B virus-induced defect of monocyte-derived dendritic cells leads to impaired T helper type 1 response in vitro: Mechanisms for viral immune escape. Immunology 2003;109:487–495.
  • Op den Brouw ML, Binda RS, van Roosmalenv MH, Hepatitis B virus surface antigen impairs myeloid dendritic cell function: A possible immune escape mechanism of hepatitis B virus. Immunology 2009;126:280–289.
  • Untergasser A, Zedler U, Langenkamp A, Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology 2006;43:539–547.
  • Albert ML, Decalf J, Pol S. Plasmacytoid dendritic cells move down on the list of suspects: in search of the immune pathogenesis of chronic hepatitis C. J Hepatology 2008;49:1069–1078.
  • Liu B, Woltman AM, Janssen HL, Boonstra A. Modulation of dendritic cell function by persistent viruses. J Leukoc Biol 2009;85:205–214.
  • Lau DT, Fish PM, Sinha M, Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology 2008;47:799–809.
  • Nattermann J, Zimmermann H, Iwan A, Hepatitis C virus E2 and CD81 interaction may be associated with altered trafficking of dendritic cells in chronic hepatitis C. Hepatology 2006;44:945–954.
  • Averill L, Lee WM, Karandikar NJ. Differential dysfunction in dendritic cell subsets during chronic HCV infection. Clin Immunol 2007;123:40–49.
  • Siavoshian S, Abraham JD, Thumann C, Hepatitis C virus core, NS3, NS5A, NS5B proteins induce apoptosis in mature dendritic cells. J Med Virol 2005;75:402–411.
  • Longman RS, Talal AH, Jacobson IM, Normal functional capacity in circulating myeloid and plasmacytoid dendritic cells in patients with chronic hepatitis C. J Infect Dis 2005;192:497–503.
  • Lai WK, Curbishley SM, Goddard S, Alabraba E, Shaw J, Youster J, McKeating J, Adams DH. Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. Journal of Hepatology 2007;47:338–347.
  • Rodrigue-Gervais IG, Jouan L, Beaule G, Poly(I:C) and lipopolysaccharide innate sensing functions of circulating human myeloid dendritic cells are affected in vivo in hepatitis C virus-infected patients. J Virology 2007;81:5537–5546.
  • Della Bella S, Crosignani A, Riva A, Decrease and dysfunction of dendritic cells correlate with impaired hepatitis C virus-specific CD4+ T-cell proliferation in patients with hepatitis C virus infection. Immunology 2007;121:283–292.
  • Kanto T, Hayashi N. Immunopathogenesis of hepatitis C virus infection: Multifaceted strategies subverting innate and adaptive immunity. Intern Med 2006;45:183–191.
  • Kanto T, Inoue M, Miyatake H, Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. J Infect Dis 2004;190:1919–1926.
  • Yonkers NL, Rodriguez B, Milkovich KA, TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection. J Immunol 2007;178:4436–4444.
  • Cheng G, Zhong J, Chisari FV. Inhibition of dsRNA-induced signaling in hepatitis C virus-infected cells by NS3 protease-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 2006;103:8499–8504.
  • de Lucas S, Bartolome J, Carreno V. Hepatitis C virus core protein down-regulates transcription of interferon-induced antiviral genes. J Infect Dis 2005;191:93–99.
  • Gale M Jr, Foy EM. Evasion of intracellular host defence by hepatitis C virus. Nature 2005;436:939–945.
  • Cocquerel L, Voisset C, Dubuisson J. Hepatitis C virus entry: Potential receptors and their biological functions. J Gen Virol 2006;87:1075–1084.
  • Zhou Y, Lukes Y, AndersonvJ, Hepatitis C virus E2 envelope protein induces dendritic cell maturation. J Viral Hepat 2007;14:849–858.
  • Ludwig IS, Lekkerkerker AN, Depla E, Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virology 2004;78:8322–8332.
  • Gardner JP, Durso RJ, Arrigale RR, L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 2003;100:4498–4503.
  • Cormier EG, Durso RJ, Tsamis F, L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A 2004;101:14067–14072.
  • Lozach PY, Amara A, Bartosch B, C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem 2004;279:32035–32045.
  • Auffermann-Gretzinger S, Keeffe EB, Levy S. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 2001;97:3171–3176.
  • Dolganiuc A, Kodys K, Kopasz A, Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J Immunol 2003;170:5615–5624.
  • Kanto T, Hayashi N, Takehara T, Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol 1999;162:5584–5591.
  • Bain C, Fatmi A, Zoulim F, Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology 2001;120:512–524.
  • Longman RS, Talal AH, Jacobson IM, Presence of functional dendritic cells in patients chronically infected with hepatitis C virus. Blood 2004;103:1026–1029.
  • Rollier C, Drexhage JA, Verstrepen BE, Chronic hepatitis C virus infection established and maintained in chimpanzees independent of dendritic cell impairment. Hepatology 2003;38:851–858.
  • Gregory SM, West JA, Dillon PJ, Toll-like receptor signaling controls reactivation of KSHV from latency. Proc Natl Acad Sci U S A 2009;106:11725–11730.
  • Mikloska Z, Bosnjak L, Cunningham AL. Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virology 2001;75:5958–5964.
  • Jugovic P, Hill AM, Tomazin R, Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J Virology 1998;72:5076–5084.
  • Tomazin R, Hill AB, Jugovic P, Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 1996;15:3256–3266.
  • York IA, Roop C, Andrews DW, A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 1994;77:525–535.
  • Kruse M, Rosorius O, Kratzer F, Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virology 2000;74:7127–7136.
  • Hock BD, Kato M, McKenzie JL, Hart DN. A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 2001;13:959–967.
  • Kummer M, Turza NM, Muhl-Zurbes P, Herpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasome. J Virology 2007;81:6326–6338.
  • Neumann J, Eis-Hubinger AM, Koch N. Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol 2003;171:3075–3083.
  • Mueller SN, Jones CM, Smith CM, Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J Exp Med 2002;195:651–656.
  • Medici MA, Sciortino MT, Perri D, Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: Role of nuclear factor kappaB. J Biol Chem 2003;278:36059–36067.
  • Jones CA, Fernandez M, Herc K, Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J Virology 2003;77:11139–11149.
  • Prechtel AT, Turza NM, Kobelt DJ, Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 2005;86:1645–1657.
  • Theodoridis AA, Prechtel AT, Turza NM, Infection of human dendritic cells with herpes simplex virus type 1 dramatically diminishes the mRNA levels of the prostaglandin E(2) receptors EP2 and EP4. Immunobiology 2007;212:827–838.
  • Donaghy H, Bosnjak L, Harman AN, Role for plasmacytoid dendritic cells in the immune control of recurrent human herpes simplex virus infection. J Virology 2009;83:1952–1961.
  • Sandberg K, Matsson P, Alm GV. A distinct population of nonphagocytic and low level CD4+ null lymphocytes produce IFN-alpha after stimulation by herpes simplex virus-infected cells. J Immunol 1990;145:1015–1020.
  • Fitzgerald-Bocarsly P, Feldman M, Mendelsohnv M, Human mononuclear cells which produce interferon-alpha during NK(HSV-FS) assays are HLA-DR positive cells distinct from cytolytic natural killer effectors. J Leukoc Biol 1988;43:323–334.
  • Hochrein, H., Schlatter B, O'Keeffe M, Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A 2004;101:11416–11421.
  • Krug, A., Luker GD, Barchet W, Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004;103:1433–1437.
  • Lund J, Sato A, Akira S, Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003;198:513–520.
  • de Jong MA, de Witte L, Bolmstedt A, Dendritic cells mediate herpes simplex virus infection and transmission through the C-type lectin DC-SIGN. J Gen Virol 2008;89:2398–2409.
  • Satoh T, Arase H. HSV-1 infection through inhibitory receptor, PILRalpha. Uirusu 2008;58:27–36.
  • Puttur FK, Fernandez MA, White R, Herpes simplex virus infects skin gamma delta T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation. J Immunol 2010;185:477–487.
  • Bosnjak L, Miranda-Saksena M, Koelle DM, Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 2005;174:2220–2227.
  • Gilbert MJ, Riddell SR, Plachter B, Greenberg PD. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 1996;383:720–722.
  • Wiertz EJ, Jones TR, Sun L, The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996;84:769–779.
  • Wiertz EJ, Tortorella D, Bogyo M, Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996;384:432–438.
  • Ben-Arieh SV, Zimerman B, Smorodinsky NI, Human cytomegalovirus protein US2 interferes with the expression of human HFE, a nonclassical class I major histocompatibility complex molecule that regulates iron homeostasis. J Virology 2001;75:10557–10562.
  • Tomazin R, Boname J, Hegde NR, Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 1999;5:1039–1043.
  • Ahn K, Gruhler A, Galocha B, The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 1997;6:613–621.
  • Hegde NR, Tomazin RA, Wisner TW, Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: A novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virology 2002;76:10929–10941.
  • Jones TR, Wiertz EJ, Sun L, Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A 1996;93:11327–11333.
  • Furman MH, Dey N, Tortorella D, Ploeghv HL. The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virology 2002;76:11753–11756.
  • Trgovcich J, Cebulla C, Zimmerman P, Sedmak DD. Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. J Virology 2006;80:951–963.
  • Goldmacher VS, Bartle LM, Skaletskaya A, A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 1999;96:12536–12541.
  • Kledal TN, Rosenkilde MM, Schwartz TW. Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 1998;441:209–214.
  • Kotenko SV, Saccani S, Izotova LS, Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A 2000;97:1695–1700.
  • Mocarski ES Jr. Immunomodulation by cytomegaloviruses: Manipulative strategies beyond evasion. Trends Microbiol 2002;10:332–339.
  • Penfold ME, Dairaghi DJ, Duke GM, Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci U S A 1999;96:9839–9844.
  • Skaletskaya A, Bartle LM, Chittenden T, A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Nat Acad Sci U S A 2001;98:7829–7834.
  • Hahn G, Jores R, Mocarski ES. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A 1998;95:3937–3942.
  • Beck K, Meyer-Konig U, Weidmann M, Human cytomegalovirus impairs dendritic cell function: A novel mechanism of human cytomegalovirus immune escape. Eur J Immunol 2003;33:1528–1538.
  • Halary F, Amara A, Lortat-Jacob H, Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 2002;17:653–664.
  • Gerna G, Percivalle E, Lilleri D, Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131–128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 2005;86:275–284.
  • Raftery MJ, Schwab M, Eibert SM, Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 2001;15:997–1009.
  • Moutaftsi M, Mehl AM, Borysiewicz LK, Tabi Z. Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells. Blood 2002;99:2913–2921.
  • Frascaroli G, Varani S, Mastroianni A, Dendritic cell function in cytomegalovirus-infected patients with mononucleosis. J Leukoc Biol 2006;79:932–940.
  • Wagner CS, Walther-Jallow L, Buentke E, Human cytomegalovirus-derived protein UL18 alters the phenotype and function of monocyte-derived dendritic cells. J Leukoc Biol 2008;83:56–63.
  • Varani S, Frascaroli G, Homman-Loudiyi M, Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol 2005;77:219–228.
  • Kvale EO, Dalgaard J, Lund-Johansen F, CD11c+ dendritic cells and plasmacytoid DCs are activated by human cytomegalovirus and retain efficient T cell-stimulatory capability upon infection. Blood 2006;107:2022–2029.
  • Varani S, Cederarv M, Feld S, Human cytomegalovirus differentially controls B cell and T cell responses through effects on plasmacytoid dendritic cells. J Immunol 2007;179:7767–7776.
  • Danis B, George TC, Goriely S, Interferon regulatory factor 7-mediated responses are defective in cord blood plasmacytoid dendritic cells. Eur J Immunol 2008;38:507–517.
  • Jenkins DE, Yasukawa LL, Bergen R, Comparison of primary sensitization of naive human T cells to varicella-zoster virus peptides by dendritic cells in vitro with responses elicited in vivo by varicella vaccination. J Immunol 1999;162:560–567.
  • Abendroth A, Morrow G, Cunningham AL, Slobedman B. Varicella-zoster virus infection of human dendritic cells and transmission to T cells: Implications for virus dissemination in the host. J Virology 2001;75:6183–6192.
  • Morrow G, Slobedman B, Cunningham AL, Abendroth A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virology 2003;77:4950–4959.
  • Tsokos GC, Magrath IT, Balow JE. Epstein-Barr virus induces normal B cell responses but defective suppressor T cell responses in patients with systemic lupus erythematosus. J Immunol 1983;131:1797–1801.
  • Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004;4:757–768.
  • Lerner MR, Andrews NC, Miller G, Steitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A 1981;78:805–809.
  • Iwakiri D, Zhou L, Samanta M, Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 2009;206:2091–2099.
  • Quan TE, Roman RM, Rudenga BJ, Epstein-Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum 2010;62:1693–1701.
  • Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2002;2:59–65.
  • Barnard P, Payne E, McMillan NA. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology 2000;277:411–419.
  • Park JS, Kim EJ, Kwon HJ, Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 2000;275:6764–6769.
  • Tindle RW, Herd K, Doan T, Nonspecific down-regulation of CD8+ T-cell responses in mice expressing human papillomavirus type 16 E7 oncoprotein from the keratin-14 promoter. J Virology 2001;75:5985–5997.
  • Cho YS, Kang JW, Cho M, Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18. FEBS Lett 2001;501:139–145.
  • Straight SW, Herman B, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virology 1995;69:3185–3192.
  • Le Poole IC, ElMasri WM, Denman CJ, Langerhans cells and dendritic cells are cytotoxic towards HPV16 E6 and E7 expressing target cells. Cancer Immunol Immunother 2008;57:789–797.
  • Ford E, Nelson KE, Warren D. Epidemiology of epidemic keratoconjunctivitis. Epidemiol Rev 1987;9:244–261.
  • Kaufman HE. Treatment of viral diseases of the cornea and external eye. Prog Retin Eye Res 2000;19:69–85.
  • Adams WC, Bond E, Havenga MJ, Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus-adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN. J Gen Virology 2009;90:1600–1610.
  • Lore K, Adams WC, Havenga MJ, Myeloid and plasmacytoid dendritic cells are susceptible to recombinant adenovirus vectors and stimulate polyfunctional memory T cell responses. J Immunol 2007;179:1721–1729.
  • Kessler T, Hamprecht K, Feuchtinger T, Jahn G. Dendritic cells are susceptible to infection with wild-type adenovirus, inducing a differentiation arrest in precursor cells and inducing a strong T-cell stimulation. J Gen Virol 2010;91:1150–1154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.