562
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Functional Plasticity of Th17 Cells: Implications in Gastrointestinal Tract Function

, , &
Pages 493-510 | Accepted 26 Jul 2013, Published online: 16 Sep 2013

REFERENCES

  • Usui T, Preiss JC, Kanno Y, T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med 2006;203:755–766.
  • Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis 1999;5:285–294.
  • Kotake S, Udagawa N, Takahashi N, IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999;103:1345–1352.
  • Teunissen MB, Koomen CW, de Waal Malefyt R, Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 1998;111:645–649.
  • Langrish CL, Chen Y, Blumenschein WM, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005;201:233–240.
  • Ivanov II, McKenzie BS, Zhou L, The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121–1133.
  • Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev 2008;226:87–102.
  • Cosmi L, De Palma R, Santarlasci V, Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 2008;205:1903–1916.
  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007;8:942–949.
  • Zhou L, Ivanov II, Spolski R, IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007;8:967–974.
  • Yang XO, Panopoulos AD, Nurieva R, STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007;282:9358–9363.
  • Sutton C, Brereton C, Keogh B, A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006;203:1685–1691.
  • von Andrian UH, Mackay CR. T-cell function and migration: two sides of the same coin. N Engl J Med 2000;343:1020–1034.
  • Sallusto F, Lanzavecchia A. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 2009;39:2076–2082.
  • Lord GM, Rao RM, Choe H, T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 2005;106:3432–3439.
  • Scotet E, Schroeder S, Lanzavecchia A. Molecular regulation of CC-chemokine receptor 3 expression in human T helper 2 cells. Blood 2001;98:2568–2570.
  • Annunziato F, Cosmi L, Santarlasci V, Phenotypic and functional features of human Th17 cells. J Exp Med 2007;204:1849–1861.
  • Wilson NJ, Boniface K, Chan JR, Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007;8:950–957.
  • Aggarwal S, Ghilardi N, Xie MH, Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278:1910–1914.
  • Veldhoen M, Hocking RJ, Atkins CJ, TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24:179–189.
  • Bettelli E, Carrier Y, Gao W, Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235–238.
  • Cho ML, Kang JW, Moon YM, STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 2006;176:5652–5661.
  • Yang L, Anderson DE, Baecher-Allan C, IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350–352.
  • Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641–649.
  • Volpe E, Servant N, Zollinger R, A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008;9:650–657.
  • Santarlasci V, Maggi L, Capone M, TGF-beta indirectly favors the development of human Th17 cells by inhibiting Th1 cells. Eur J Immunol 2009;39:207–215.
  • Kleinschek MA, Boniface K, Sadekova S, Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med 2009;206:525–534.
  • Annunziato F, Cosmi L, Liotta F, Defining the human T helper 17 cell phenotype. Trends Immunol 2012;33:505–512.
  • Harrington LE, Hatton RD, Mangan PR, Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6:112–1132.
  • Park H, Li Z, Yang XO, A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6:1133–1141.
  • Baba M, Imai T, Nishimura M, Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J Biol Chem 1997;272:14893–14898.
  • Nurieva R, Yang XO, Martinez G, Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007;448:480–483.
  • Leung JM, Davenport M, Wolff MJ, IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2013; doi: 10.1038/mi.2013.31.
  • Dambacher J, Beigel F, Zitzmann K, The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut 2009;58:1207–1217.
  • Pelletier M, Maggi L, Micheletti A, Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010;115:335–343.
  • Ouyang W, Ranganath SH, Weindel K, Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998;9:745–755.
  • Cosmi L, Maggi L, Santarlasci V, Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol 2010;125:222–230; e1–4.
  • Zielinski CE, Mele F, Aschenbrenner D, Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012;484:514–518.
  • Acosta-Rodriguez EV, Rivino L, Geginat J, Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007;8:639–646.
  • Bending D, De la Pena H, Veldhoen M, Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 2009;119:565–572.
  • Wei G, Wei L, Zhu J, Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009;30:155–167.
  • Nistala K, Adams S, Cambrook H, Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci USA 2010;107:14751–14756.
  • Cosmi L, Cimaz R, Maggi L, Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum 2011;63:2504–2515.
  • Hirota K, Duarte JH, Veldhoen M, Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 2011;12:255–263.
  • Santarlasci V, Maggi L, Capone M, Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity 2012;36:201–214.
  • Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007;178:6725–6729.
  • Baecher-Allan C, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 2006;176:4622–4631.
  • Ivanov II, Frutos Rde L, Manel N, Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008;4:337–349.
  • Mangan PR, Harrington LE, O'Quinn DB, Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441:231–234.
  • Li MO, Flavell RA. TGF-beta: a master of all T cell trades. Cell 2008;134:392–404.
  • Chen Y, Thai P, Zhao YH, Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 2003;278:17036–17043.
  • Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res 2010;20:4–12.
  • McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol 2007;19:372–376.
  • Zhou L, Lopes JE, Chong MM, TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008;453:236–240.
  • Mucida D, Park Y, Kim G, Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317:256–260.
  • Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007;204:1765–1774.
  • Quintana FJ, Basso AS, Iglesias AH, Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453:65–71.
  • Milner JD, Brenchley JM, Laurence A, Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 2008;452:773–776.
  • de Beaucoudrey L, Puel A, Filipe-Santos O, Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 2008;205:1543–1550.
  • Dang EV, Barbi J, Yang HY, Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011;146:772–784.
  • Harris TJ, Grosso JF, Yen HR, Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 2007;179:4313–4317.
  • Miossec P. Interleukin-17 and Th17 cells: from adult to juvenile arthritis–now it is serious! Arthritis Rheum 2011;63:2168–2171.
  • Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis 2011;70:727–732.
  • Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012;489:231–241.
  • Tajima M, Wakita D, Noguchi D, IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med 2008;205:1019–1027.
  • Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 2008;38:2636–2649.
  • Sutton C, Mielke LA, Mills KH. IL-17-producing γδ T cells and innate lymphoid cells. Eur J Inmunol 2012;42(9):2221–2231.
  • Monteiro M, Almeida C, Agua-Doce A, Graca L. Induced IL-17-producing invariant NKT cells require activation in presence of TGF-β and IL-1β. J Inmunol 2013;190:805–811.
  • Ley K, Smith E, Stark MA. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Inmunol Res 2006;34:229–242.
  • Cua DJ TC. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010;10:479–489.
  • Spitsin S, Tustin NB, Riedel E, Programmed death 1 receptor changes ex vivo in HIV-infected adults following initiation of highly active antiretroviral therapy. Clin Vaccine Immunol 2012;19:752–756.
  • Bernink JH, Peters CP, Munneke M, Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013;14:221–229.
  • Fuchs A, Vermi W, Lee JS, Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 2013;38:769–781.
  • Spits H, Artis D, Colonna M, Innate lymphoid cells: a proposal for uniform nomenclature. Nat Rev Immunol 2013;13:145–149.
  • Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 2012;30:647–675.
  • Powell N, Walker AW, Stolarczyk E, The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012;37:674–684.
  • Satoh-Takayama N, Dumoutier L, Lesjean-Pottier S, The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. J Inmunol 2009;183:6579–6587.
  • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003;3:331–341.
  • Ohnmacht C, Marques R, Presley L, Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity. Cell Microbiol 2011;13:653–659.
  • Monteleone G, Monteleone I, Fina D, Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 2005;128:687–694.
  • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012;148:1258–1270.
  • Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol 2011;23:761–768.
  • Ivanov II, Atarashi K, Manel N, Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485–498.
  • Wu S, Rhee KJ, Albesiano E, A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009;15:1016–1022.
  • Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2011;108(Suppl 1):4615–4622.
  • Uematsu S, Jang MH, Chevrier N, Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 2006;7:868–874.
  • Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31:677–689.
  • Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med 2006;84:712–725.
  • Sczesnak A, Segata N, Qin X, The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 2011;10:260–272.
  • Prakash T, Oshima K, Morita H, Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 2011;10:273–284.
  • Kinnebrew MA, Buffie CG, Diehl GE, Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012;36:276–287.
  • Lee SJ, McLachlan JB, Kurtz JR, Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development. PLoS Pathog 2012;8:e1002499.
  • Atarashi K, Nishimura J, Shima T, ATP drives lamina propria T(H)17 cell differentiation. Nature 2008;455:808–812.
  • Shaw MH, Kamada N, Kim YG, Nunez G. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med 2012;209:251–258.
  • Torchinsky MB, Garaude J, Martin AP, Blander JM. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 2009;458:78–82.
  • Elson CO, Cong Y, Weaver CT, Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 2007;132:2359–2370.
  • Wu HJ, Ivanov II, Darce J, Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010;32:815–827.
  • Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010;140:859–870.
  • Stepankova R, Powrie F, Kofronova O, Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4 +T cells. Inflamm Bowel Dis 2007;13:1202–1211.
  • Kriegel MA, Sefik E, Hill JA, Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 2011;108:11548–11553.
  • Weaver CT, Murphy KM. T-cell subsets: the more the merrier. Curr Biol 2007;17:R61–R63.
  • McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity 2008;28:445–453.
  • Liang SC, Tan XY, Luxenberg DP, Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006;203:2271–2279.
  • Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011;12:383–390.
  • Wolk K, Witte E, Witte K, Biology of interleukin-22. Semin Immunopathol 2010;32:17–31.
  • Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003;14:155–174.
  • Siakavellas SI, Bamias G. Role of the IL-23/IL-17 axis in Crohn's disease. Discov Med 2012;14:253–262.
  • Ogawa A, Andoh A, Araki Y, Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 2004;110:55–62.
  • Yang XO, Pappu BP, Nurieva R, T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008;28:29–39.
  • Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002;20:495–549.
  • Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 2000;118:1001–1011.
  • Zhang Z, Zheng M, Bindas J, Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 2006;12:382–388.
  • Yang XO, Chang SH, Park H, Regulation of inflammatory responses by IL-17F. J Exp Med 2008;205:1063–1075.
  • Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009;9:556–567.
  • Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004;21:467–476.
  • Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011;34:149–162.
  • Yen D, Cheung J, Scheerens H, IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006;116:1310–1316.
  • Fina D, Sarra M, Caruso R, Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 2008;57:887–892.
  • Fantini MC, Rizzo A, Fina D, IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. Eur J Immunol 2007;37:3155–3163.
  • Fina D, Caruso R, Pallone F, Monteleone G. Interleukin-21 (IL-21) controls inflammatory pathways in the gut. Endocr Metab Immune Disord Drug Targets 2007;7:288–291.
  • Peluso I, Fantini MC, Fina D, IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 2007;178:732–739.
  • Strengell M, Matikainen S, Siren J, IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 2003;170:5464–5469.
  • Monteleone G, Caruso R, Fina D, Control of matrix metalloproteinase production in human intestinal fibroblasts by interleukin 21. Gut 2006;55:1774–1780.
  • Caruso R, Fina D, Peluso I, IL-21 is highly produced in Helicobacter pylori-infected gastric mucosa and promotes gelatinases synthesis. J Immunol 2007;178:5957–5965.
  • Ahern PP, Schiering C, Buonocore S, Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010;33:279–288.
  • Brand S, Beigel F, Olszak T, IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2006;290:G827–G838.
  • Sugimoto K, Ogawa A, Mizoguchi E, IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008;118:534–544.
  • Zenewicz LA, Yancopoulos GD, Valenzuela DM, Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008;29:947–957.
  • Zenewicz LA, Flavell RA. IL-22 and inflammation: leukin’ through a glass onion. Eur J Immunol 2008;38:3265–3268.
  • Fukui H, Sekikawa A, Tanaka H, DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. Inflamm Bowel Dis 2011;17:1177–1188.
  • Jiang R, Wang H, Deng L, IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer 2013;13:59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.