2,792
Views
29
CrossRef citations to date
0
Altmetric
ARTICLE

Forkhead box P3: The Peacekeeper of the Immune System

, , &
Pages 129-145 | Accepted 04 Nov 2013, Published online: 19 Dec 2013

REFERENCES

  • Al-Herz W, Bousfiha A, Casanova JL, Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol 2011;2:54.
  • Ferraro A, Socci C, Stabilini A, Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 2011;60(11):2903–2913.
  • Barreto M, Ferreira RC, Lourenco L, Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol 2009;10:5.
  • Marangoni F, Trifari S, Scaramuzza S, WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells. J Exp Med 2007;204(2): 369–380.
  • Sauer AV, Brigida I, Carriglio N, Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 2012;119(6):1428–1439.
  • Gambineri E, Perroni L, Passerini L, Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol 2008;122(6):1105–1112 e1.
  • Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 2009;10(7):689–695.
  • Wildin RS, Ramsdell F, Peake J, X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001;27(1): 18–20.
  • Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol 2012;3:211. doi: 10.3389/fimmu.2012.00211.
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057–1061.
  • Hill JA, Feuerer M, Tash K, Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 2007;27(5):786–800.
  • Ohkura N, Hamaguchi M, Morikawa H, T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 2012;37(5):785–799.
  • Gavin MA, Rasmussen JP, Fontenot JD, Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445(7129):771–775.
  • Aarts-Riemens T, Emmelot ME, Verdonck LF, Mutis T. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Eur J Immunol 2008;38(5):1381–1390.
  • Allan SE, Alstad AN, Merindol N, Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol Ther 2008;16(1):194–202.
  • Abbas AK, Benoist C, Bluestone JA, Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 2013;14(4):307–308.
  • Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 2007;8(3):277–284.
  • Hoffmann P, Boeld TJ, Eder R, Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol 2009;39(4):1088–1097.
  • d'Hennezel E, Yurchenko E, Sgouroudis E, Single-cell analysis of the human T regulatory population uncovers functional heterogeneity and instability within FOXP3+ cells. J Immunol 2011;186(12):6788–6797.
  • Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 2007;445(7129):766–770.
  • Hori S. Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol 2010;22(5): 575–582.
  • Zhou X, Bailey-Bucktrout SL, Jeker LT, Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009;10(9):1000–1007.
  • Voo KS, Wang YH, Santori FR, Identification of IL-17-producing FOXP3 +regulatory T cells in humans. Proc Natl Acad Sci USA 2009;106(12):4793–4798.
  • Beriou G, Costantino CM, Ashley CW, IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 2009;113(18):4240–4249.
  • Ayyoub M, Deknuydt F, Raimbaud I, Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci USA 2009;106(21):8635–8640.
  • Koenen HJ, Smeets RL, Vink PM, Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008;112(6):2340–2352.
  • Hansmann L, Schmidl C, Kett J, Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. J Immunol 2012;188(3):1275–1282.
  • Rubtsov YP, Niec RE, Josefowicz S, Stability of the regulatory T cell lineage in vivo. Science 2010;329(5999):1667–1671.
  • Miyao T, Floess S, Setoguchi R, Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 2012;36(2): 262–275.
  • Hori S. Regulatory T cell plasticity: beyond the controversies. Trends Immunol 2011;32(7):295–300.
  • Hori S. The Foxp3 interactome: a network perspective of T(reg) cells. Nat Immunol 2012;13(10): 943–945.
  • Duhen T, Duhen R, Lanzavecchia A, Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 2012;119(19):4430–4440.
  • Allan SE, Crome SQ, Crellin NK, Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007;19(4):345–354.
  • Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007;110(8):2983–2990.
  • McMurchy AN, Gillies J, Gizzi MC, A novel function for FOXP3 in humans: intrinsic regulation of conventional T cells. Blood 2013;121(8):1265–1275.
  • Merlo A, Casalini P, Carcangiu ML, FOXP3 expression and overall survival in breast cancer. J Clin Oncol 2009;27(11):1746–1752.
  • Zuo T, Wang L, Morrison C, FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 2007;129(7):1275–1286.
  • Zuo T, Liu R, Zhang H, FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 2007;117(12):3765–3773.
  • Ebert LM, Tan BS, Browning J, The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 2008;68(8):3001–3009.
  • Wang L, Liu R, Li W, Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 2009;16(4):336–346.
  • Moes N, Rieux-Laucat F, Begue B, Reduced expression of FOXP3 and regulatory T-cell function in severe forms of early-onset autoimmune enteropathy. Gastroenterology 2010;139(3):770–778.
  • Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci USA 1997;94(7):3168–3171.
  • Cohen AC, Nadeau KC, Tu W, Cutting edge: Decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol 2006;177(5):2770–2774.
  • Barzaghi F, Passerini L, Gambineri E, Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun 2012;38(1):49–58.
  • Battaglia M, Stabilini A, Migliavacca B, Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006;177(12):8338–8347.
  • Bindl L, Torgerson T, Perroni L, Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). J Pediatr 2005;147(2):256–259.
  • Yong PL, Russo P, Sullivan KE. Use of sirolimus in IPEX and IPEX-like children. J Clin Immunol 2008;28(5):581–587.
  • Seidel MG, Fritsch G, Lion T, Selective engraftment of donor CD4+25high FOXP3-positive T cells in IPEX syndrome after nonmyeloablative hematopoietic stem cell transplantation. Blood 2009;113(22):5689–5691.
  • Brunkow ME, Jeffery EW, Hjerrild KA, Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27(1): 68–73.
  • Bacchetta R, Passerini L, Gambineri E, Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest 2006;116(6):1713–1722.
  • d'Hennezel E, Ben-Shoshan M, Ochs HD, FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N Engl J Med 2009;361(17):1710–1713.
  • d'Hennezel E, Bin Dhuban K, Torgerson T, Piccirillo C. The immunogenetics of immune dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2012;49(5): 291–302.
  • Bandukwala HS, Wu Y, Feuerer M, Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 2011;34(4):479–491.
  • McMurchy AN, Gillies J, Allan SE, Point mutants of forkhead box P3 that cause immune dysregulation, polyendocrinopathy, enteropathy, X-linked have diverse abilities to reprogram T cells into regulatory T cells. J Allergy Clin Immunol 2010;126(6):1242–1251.
  • Passerini L, Olek S, Di Nunzio S, Forkhead box protein 3 (FOXP3) mutations lead to increased TH17 cell numbers and regulatory T-cell instability. J Allergy Clin Immunol 2011;128(6): 1376–1379 e1.
  • Nieves DS, Phipps RP, Pollock SJ, Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Arch Dermatol 2004;140(4): 466–472.
  • Chatila TA, Blaeser F, Ho N, JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000;106(12):R75–R81.
  • Kinnunen T, Chamberlain N, Morbach H, Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood 2013;121(9):1595–1603.
  • Kobayashi I, Kubota M, Yamada M, Autoantibodies to villin occur frequently in IPEX, a severe immune dysregulation, syndrome caused by mutation of FOXP3. Clin Immunol 2011;141(1):83–89.
  • Kobayashi I, Imamura K, Kubota M, Identification of an autoimmune enteropathy-related 75-kilodalton antigen. Gastroenterology 1999;117(4):823–830.
  • Lampasona V, Passerini L, Barzaghi F, Autoantibodies to harmonin and villin are diagnostic markers in children with IPEX syndrome. PLoS One 2013;8(11):e78664. doi: 10.1371/ journal.pone.0078664.
  • Passerini L, Di Nunzio S, Gregori S, Functional type 1 regulatory T cells develop regardless of FOXP3 mutations in patients with IPEX syndrome. Eur J Immunol 2011;41(4):1120–1131.
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985;161(1):72–87.
  • Sakaguchi S, Sakaguchi N, Asano M, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–1164.
  • Ohki H, Martin C, Corbel C, Tolerance induced by thymic epithelial grafts in birds. Science 1987;237(4818):1032–1035.
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25 +regulatory T cells. Nat Immunol 2003;4(4):330–336.
  • Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 2006;25(2):249–259.
  • Wong J, Obst R, Correia-Neves M, Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 2007;178(11):7032–7041.
  • Hsieh CS, Liang Y, Tyznik AJ, Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 2004;21(2):267–277.
  • Koonpaew S, Shen S, Flowers L, Zhang W. LAT-mediated signaling in CD4+CD25 +regulatory T cell development. J Exp Med 2006;203(1):119–129.
  • Tanaka S, Maeda S, Hashimoto M, Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J Immunol 2010;185(4):2295–2305.
  • Maine CJ, Hamilton-Williams EE, Cheung J, PTPN22 alters the development of regulatory T cells in the thymus. J Immunol 2012;188(11):5267–5275.
  • Todd JA, Walker NM, Cooper JD, Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007;39(7):857–864.
  • Criswell LA, Pfeiffer KA, Lum RF, Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005;76(4):561–571.
  • Bottini N, Musumeci L, Alonso A, A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36(4):337–338.
  • Zhang J, Zahir N, Jiang Q, The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet 2011;43(9):902–907.
  • Burchill MA, Yang J, Vang KB, Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 2008;28(1):112–121.
  • Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 2008;28(1):100–111.
  • Chen W, Jin W, Hardegen N, Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198(12):1875–1886.
  • Tone Y, Furuuchi K, Kojima Y, Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2008;9(2):194–202.
  • Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006;25(3):455–471.
  • Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006;25(3):441–454.
  • Liu Y, Zhang P, Li J, A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 2008;9(6):632–640.
  • Zheng Y, Josefowicz S, Chaudhry A, Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010;463(7282):808–812.
  • Ouyang W, Beckett O, Ma Q, Li MO. Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 2010;32(5):642–653.
  • Watanabe N, Wang YH, Lee HK, Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005;436(7054):1181–1185.
  • Hanabuchi S, Ito T, Park WR, Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 2010;184(6):2999–3007.
  • Martin-Gayo E, Sierra-Filardi E, Corbi AL, Toribio ML. Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood 2010;115(26):5366–5375.
  • Proietto AI, van Dommelen S, Zhou P, Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA 2008;105(50):19869–19874.
  • Roman E, Shino H, Qin FX, Liu YJ. Cutting edge: hematopoietic-derived APCs select regulatory T cells in thymus. J Immunol 2010;185(7):3819–3823.
  • Lohr J, Knoechel B, Kahn EC, Abbas AK. Role of B7 in T cell tolerance. J Immunol 2004;173(8): 5028–5035.
  • Salomon B, Lenschow DJ, Rhee L, B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000;12(4):431–440.
  • Tang Q, Henriksen KJ, Boden EK, Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25 +regulatory T cells. J Immunol 2003;171(7):3348–3352.
  • Schmidt-Supprian M, Tian J, Grant EP, Differential dependence of CD4+CD25 +regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci USA 2004;101(13):4566–4571.
  • Medoff BD, Sandall BP, Landry A, Differential requirement for CARMA1 in agonist-selected T-cell development. Eur J Immunol 2009;39(1):78–84.
  • Barnes MJ, Krebs P, Harris N, Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol 2009;7(3):e51.
  • Long M, Park SG, Strickland I, Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 2009;31(6):921–931.
  • Kerdiles YM, Stone EL, Beisner DR, Foxo transcription factors control regulatory T cell development and function. Immunity 2010;33(6):890–904.
  • Harada Y, Elly C, Ying G, Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 2010;207(7):1381–1391.
  • Ouyang W, Liao W, Luo CT, Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 2012;491(7425):554–559.
  • Fu W, Ergun A, Lu T, A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol 2012;13(10):972–980.
  • Di Nunzio S, Cecconi M, Passerini L, Wild-type FOXP3 is selectively active in CD4+CD25(hi) regulatory T cells of healthy female carriers of different FOXP3 mutations. Blood 2009;114(19):4138–4141.
  • Cuddapah S, Barski A, Zhao K. Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 2010;22(3):341–347.
  • Kanno Y, Vahedi G, Hirahara K, Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 2012;30:707–731.
  • Mohammad HP, Baylin SB. Linking cell signaling and the epigenetic machinery. Nat Biotechnol 2010;28(10):1033–1038.
  • Schuster M, Glauben R, Plaza-Sirvent C, IkappaB(NS) protein mediates regulatory T cell development via induction of the Foxp3 transcription factor. Immunity 2012;37(6):998–1008.
  • Xiong Y, Khanna S, Grzenda AL, Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. J Biol Chem 2012;287(41):34372–34385.
  • Wei G, Wei L, Zhu J, Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 2009;30(1): 155–167.
  • Baron U, Floess S, Wieczorek G, DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 2007;37(9):2378–2389.
  • Floess S, Freyer J, Siewert C, Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 2007;5(2):e38.
  • Polansky JK, Kretschmer K, Freyer J, DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008;38(6):1654–1663.
  • Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 2007;204(7):1543–1551.
  • Polansky JK, Schreiber L, Thelemann C, Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med (Berl) 2010;88(10):1029–1040.
  • Zorn E, Nelson EA, Mohseni M, IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006;108(5):1571–1579.
  • Toker A, Engelbert D, Garg G, Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 2013;190(7):3180–3188.
  • Ono M, Yaguchi H, Ohkura N, Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007;446(7136):685–689.
  • Rudra D, Egawa T, Chong MM, Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 2009;10(11):1170–1177.
  • Kitoh A, Ono M, Naoe Y, Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 2009;31(4):609–620.
  • Bruno L, Mazzarella L, Hoogenkamp M, Runx proteins regulate Foxp3 expression. J Exp Med 2009;206(11):2329–2337.
  • Wieczorek G, Asemissen A, Model F, Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res 2009;69(2):599–608.
  • Liu B, Tahk S, Yee KM, The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 2010;330(6003):521–525.
  • Ouyang W, Beckett O, Ma Q, Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 2010;11(7):618–627.
  • Santoni de Sio FR, Barde I, Offner S, KAP1 regulates gene networks controlling T-cell development and responsiveness. FASEB J 2012;26(11):4561–4575.
  • Santoni de Sio FR, Massacand J, Barde I, KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function. Blood 2012;119(20):4675–4685.
  • Vaeth M, Schliesser U, Muller G, Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3 +regulatory T cells. Proc Natl Acad Sci USA 2012;109(40):16258–16263.
  • Venuprasad K, Huang H, Harada Y, The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 2008;9(3):245–253.
  • Lal G, Zhang N, van der Touw W, Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009;182(1):259–273.
  • Cobb BS, Hertweck A, Smith J, A role for Dicer in immune regulation. J Exp Med 2006;203(11):2519–2527.
  • Liston A, Lu LF, O'Carroll D, Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 2008;205(9):1993–2004.
  • Zhang H, Xiao Y, Zhu Z, Immune regulation by histone deacetylases: a focus on the alteration of FOXP3 activity. Immunol Cell Biol 2012;90(1):95–100.