577
Views
16
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Stepping Out of the Cytosol: AIMp1/p43 Potentiates the Link Between Innate and Adaptive Immunity

, , &

REFERENCES

  • Han JM, Kim JY, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun 2003;303(4):985–993. Epub 2003/04/10.
  • Kerjan P, Cerini C, Semeriva M, Mirande M. The multienzyme complex containing nine aminoacyl-tRNA synthetases is ubiquitous from Drosophila to mammals. Biochim et Biophys Acta 1994;1199(3):293–297. Epub 1994/04/21.
  • Dang CV. Multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases. Biosci Rep 1983;3(6):527–538. Epub 1983/06/01.
  • Cirakoglu B, Mirande M, Waller JP. A model for the structural organization of aminoacyl-tRNA synthetases in mammalian cells. FEBS Lett 1985;183(2):185–190. Epub 1985/04/22.
  • Okamoto T, Kawade Y. Electrophoretic separation of complexes of aminoacyl-tRNA synthetase and transfer RNA. Biochim et Biophys Acta 1967;145(3):613–620. Epub 1967/01/01.
  • Han JM, Park BJ, Park SG, et al. AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc Natl Acad Sci USA 2008;105(32):11206–11211. Epub 2008/08/13.
  • Park BJ, Kang JW, Lee SW, et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 2005;120(2):209–221. Epub 2005/02/01.
  • Park BJ, Oh YS, Park SY, et al. AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res 2006;66(14):6913–6918. Epub 2006/07/20.
  • Kim MJ, Park BJ, Kang YS, et al. Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat Genet 2003;34(3):330–336. Epub 2003/06/24.
  • Choi JW, Kim DG, Park MC, et al. AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J Cell Sci 2009;122(Pt 15):2710–15. Epub 2009/07/09.
  • Kim JY, Kang YS, Lee JW, et al. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proc Natl Acad Sci USA 2002;99(12):7912–7916. Epub 2002/06/13.
  • Choi JW, Um JY, Kundu JK, et al. Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 2009;30(9):1638–1644. Epub 2009/07/23.
  • Choi JW, Kim DG, Lee AE, et al. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet 2011;7(3):e1001351. Epub 2011/04/13.
  • Choi JW, Lee JW, Kim JK, et al. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J Mol Cell Biol 2012;4(3):164–173. Epub 2012/04/26.
  • Won YS, Lee SW. Selective regression of cancer cells expressing a splicing variant of AIMP2 through targeted RNA replacement by trans-splicing ribozyme. J Biotechnol 2012;158(1–2):44–49. Epub 2012/01/31.
  • Jo SM, Kim Y, Jeong YS, et al. Rapid detection of exon 2-deleted AIMP2 mutation as a potential biomarker for lung cancer by molecular beacons. Biosens Bioelectron 2013;46:142–149. Epub 2013/03/30.
  • Lee HS, Kim DG, Oh YS, et al. Chemical suppression of an oncogenic splicing variant of AIMP2 induces tumour regression. Biochem J 2013;454(3):411–416. Epub 2013/07/03.
  • Han JM, Park SG, Liu B, et al. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1/p43 controls endoplasmic reticulum retention of heat shock protein gp96: its pathological implications in lupus-like autoimmune diseases. Am J Pathol 2007;170(6):2042–2054. Epub 2007/05/26.
  • Kim G, Han JM, Kim S. Toll-like receptor 4-mediated c-Jun N-terminal kinase activation induces gp96 cell surface expression via AIMP1 phosphorylation. Biochem Biophys Res Commun 2010;397(1):100–105. Epub 2010/06/01.
  • Lee YS, Han JM, Son SH, et al. AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2. Biochem Biophys Res Commun 2008;371(3):395–400. Epub 2008/05/02.
  • Kellermann O, Tonetti H, Brevet A, et al. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. I. Species specificity of the polypeptide composition. J Biol Chem 1982;257(18):11041–11048. Epub 1982/09/25.
  • Mirande M, Cirakoglu B, Waller JP. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. Assignment of aminoacyl-tRNA synthetase activities to the polypeptide components of the complexes. J Biol Chem 1982;257(18):11056–11063. Epub 1982/09/25.
  • Mirande M, Gache Y, Le Corre D, Waller JP. Seven mammalian aminoacyl-tRNA synthetases co-purified as high molecular weight entities are associated within the same complex. EMBO J 1982;1(6):733–736. Epub 1982/01/01.
  • Mirande M, Kellermann O, Waller JP. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit. J Biol Chem 1982;257(18):11049–11055. Epub 1982/09/25.
  • Filonenko VV, Deutscher MP. Evidence for similar structural organization of the multienzyme aminoacyl-tRNA synthetase complex in vivo and in vitro. J Biol Chem 1994;269(26):17375–17378. Epub 1994/07/01.
  • Norcum MT. Ultrastructure of the eukaryotic aminoacyl-tRNA synthetase complex derived from two dimensional averaging and classification of negatively stained electron microscopic images. FEBS Lett 1999;447(2–3):217–222. Epub 1999/04/24.
  • Rho SB, Kim MJ, Lee JS, et al. Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc Natl Acad Sci USA 1999;96(8):4488–4493. Epub 1999/04/14.
  • Rho SB, Lee KH, Kim JW, et al. Interaction between human tRNA synthetases involves repeated sequence elements. Proc Natl Acad Sci USA 1996;93(19):10128–10133. Epub 1996/09/17.
  • Quevillon S, Mirande M. The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett 1996;395(1):63–67. Epub 1996/10/14.
  • Reed VS, Wastney ME, Yang DC. Mechanisms of the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha. J Biol Chem 1994;269(52):32932–32936. Epub 1994/12/30.
  • Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem 1997;272(51):32573–32579. Epub 1998/01/24.
  • Quevillon S, Robinson JC, Berthonneau E, et al. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein interactions and characterization of a core protein. J Mol Biol 1999;285(1):183–195. Epub 1999/01/08.
  • Mirande M, Le Corre D, Waller JP. A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex. Eur J Biochem/FEBS 1985;147(2):281–289. Epub 1985/03/01.
  • Norcum MT, Warrington JA. The cytokine portion of p43 occupies a central position within the eukaryotic multisynthetase complex. J Biol Chem 2000;275(24):17921–17924. Epub 2000/04/29.
  • Golinelli-Cohen MP, Mirande M. Arc1p is required for cytoplasmic confinement of synthetases and tRNA. Mol Cell Biochem 2007;300(1–2):47–59. Epub 2006/11/30.
  • Golinelli-Cohen MP, Zakrzewska A, Mirande M. Complementation of yeast Arc1p by the p43 component of the human multisynthetase complex does not require its association with yeast MetRS and GluRS. J Mol Biol 2004;340(1):15–27. Epub 2004/06/09.
  • Clauss M, Gerlach M, Gerlach H, et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990;172(6):1535–1545. Epub 1990/12/01.
  • Clauss M, Murray JC, Vianna M, et al. A polypeptide factor produced by fibrosarcoma cells that induces endothelial tissue factor and enhances the procoagulant response to tumor necrosis factor/cachectin. J Biol Chem 1990;265(12):7078–7083. Epub 1990/04/25.
  • Kao J, Ryan J, Brett G, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem 1992;267(28):20239–20247. Epub 1992/10/05.
  • Kao J, Fan YG, Haehnel I, et al. A peptide derived from the amino terminus of endothelial-monocyte-activating polypeptide II modulates mononuclear and polymorphonuclear leukocyte functions, defines an apparently novel cellular interaction site, and induces an acute inflammatory response. J Biol Chem 1994;269(13):9774–9782. Epub 1994/04/01.
  • Kao J, Houck K, Fan Y, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem 1994;269(40):25106–25119. Epub 1994/10/07.
  • Beiter T, Artelt MR, Trautmann K, Schluesener HJ. Experimental autoimmune neuritis induces differential microglia activation in the rat spinal cord. J Neuroimmunol 2005;160(1–2):25–31. Epub 2005/02/16.
  • Zhang Z, Trautmann K, Schluesener HJ. Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists. J Neuroimmunol 2005;164(1–2):154–160. Epub 2005/05/21.
  • Mueller CA, Richt JA, Meyermann R, et al. Accumulation of the proinflammatory cytokine endothelial-monocyte-activating polypeptide II in ramified microglial cells in brains of Borna virus infected Lewis rats. Neurosci Lett 2003;339(3):215–218. Epub 2003/03/14.
  • Knies UE, Behrensdorf HA, Mitchell CA, et al. Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc Natl Acad Sci USA 1998;95(21):12322–12327. Epub 1998/10/15.
  • Behrensdorf HA, van de Craen M, Knies UE, et al. The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett 2000;466(1):143–147. Epub 2000/01/29.
  • Zhang FR, Schwarz MA. Pro-EMAP II is not primarily cleaved by caspase-3 and -7. Am J Physiol Lung Cell Mol Physiol 2002;282(6):L1239–L1244. Epub 2002/05/11.
  • Shalak V, Kaminska M, Mitnacht-Kraus R, et al. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 2001;276(26):23769–23776. Epub 2001/04/18.
  • Youssef MM, Symonds P, Ellis IO, Murray JC. EMAP-II-dependent lymphocyte killing is associated with hypoxia in colorectal cancer. Br J Cancer 2006;95(6):735–743. Epub 2006/08/25.
  • Matschurat S, Knies UE, Person V, et al. Regulation of EMAP II by hypoxia. Am J Pathol 2003;162(1):93–103. Epub 2003/01/01.
  • Barnett G, Jakobsen AM, Tas M, et al. Prostate adenocarcinoma cells release the novel proinflammatory polypeptide EMAP-II in response to stress. Cancer Res 2000;60(11):2850–2857. Epub 2000/06/13.
  • Schwarz MA, Kandel J, Brett J, et al. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med 1999;190(3):341–354. Epub 1999/08/03.
  • Schwarz MA, Zhang F, Gebb S, et al. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev 2000;95(1–2):123–132. Epub 2000/07/25.
  • Berger AC, Alexander HR, Tang G, et al. Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res 2000;60(1):70–80. Epub 2000/06/30.
  • Murray JC, Heng YM, Symonds P, et al. Endothelial monocyte-activating polypeptide-II (EMAP-II): a novel inducer of lymphocyte apoptosis. J Leukoc Biol 2004;75(5):772–776. Epub 2004/02/26.
  • Murray JC, Symonds P, Ward W, et al. Colorectal cancer cells induce lymphocyte apoptosis by an endothelial monocyte-activating polypeptide-II-dependent mechanism. J Immunol 2004;172(1):274–281. Epub 2003/12/23.
  • Faisal W, Symonds P, Panjwani S, et al. Cell-surface associated p43/endothelial-monocyte-activating-polypeptide-II in hepatocellular carcinoma cells induces apoptosis in T-lymphocytes. Asian J Surg/Asian Surg Assoc 2007;30(1):13–22. Epub 2007/03/06.
  • Ko YG, Park H, Kim T, et al. A cofactor of tRNA synthetase, p43, is secreted to up-regulate proinflammatory genes. J Biol Chem 2001;276(25):23028–23033. Epub 2001/04/09.
  • Park SG, Shin H, Shin YK, et al. The novel cytokine p43 stimulates dermal fibroblast proliferation and wound repair. Am J Pathol 2005;166(2):387–398. Epub 2005/02/01.
  • de Abreu da Silva IC, Carneiro VC, Maciel Rde M, et al. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions. PloS One 2011;6(8):e23572. Epub 2011/09/03.
  • Gardella S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 2002;3(10):995–1001. Epub 2002/09/17.
  • Oh YJ, Youn JH, Ji Y, et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol 2009;182(9):5800–5809. Epub 2009/04/22.
  • Thorburn J, Frankel AE, Thorburn A. Regulation of HMGB1 release by autophagy. Autophagy 2009;5(2):247–249. Epub 2008/12/23.
  • Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2×7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 2007;179(3):1913–1925. Epub 2007/07/21.
  • Park SG, Kang YS, Ahn YH, et al. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002;277(47):45243–45248. Epub 2002/09/19.
  • Martinet W, De Meyer I, Cools N, et al. Cell death-mediated cleavage of the attraction signal p43 in human atherosclerosis: implications for plaque destabilization. Arterioscler Thromb Vasc Biol 2010;30(7):1415–1422. Epub 2010/04/24.
  • Park H, Park SG, Lee JW, et al. Monocyte cell adhesion induced by a human aminoacyl-tRNA synthetase-associated factor, p43: identification of the related adhesion molecules and signal pathways. J Leukoc Biol 2002;71(2):223–230. Epub 2002/01/31.
  • Kim E, Kim SH, Kim S, Kim TS. The novel cytokine p43 induces IL-12 production in macrophages via NF-kappaB activation, leading to enhanced IFN-gamma production in CD4+ T cells. J Immunol 2006;176(1):256–264. Epub 2005/12/21.
  • Kim E, Kim SH, Kim S, et al. AIMP1/p43 protein induces the maturation of bone marrow-derived dendritic cells with T helper type 1-polarizing ability. J Immunol 2008;180(5):2894–2902. Epub 2008/02/23.
  • Wu PC, Alexander HR, Huang J, et al. In vivo sensitivity of human melanoma to tumor necrosis factor (TNF)-alpha is determined by tumor production of the novel cytokine endothelial-monocyte activating polypeptide II (EMAPII). Cancer Res 1999;59(1):205–212. Epub 1999/01/19.
  • Yamamoto M, Fukushima T, Ueno Y, et al. Clinical significance of the expression of endothelial-monocyte activating polypeptide II (EMAPII) in the treatment of glioblastoma with recombinant mutant human tumor necrosis factor-alpha (TNF-SAM2). Anticancer Res 2000;20(6A):4081–4086. Epub 2000/12/29.
  • Gnant MF, Berger AC, Huang J, et al. Sensitization of tumor necrosis factor alpha-resistant human melanoma by tumor-specific in vivo transfer of the gene encoding endothelial monocyte-activating polypeptide II using recombinant vaccinia virus. Cancer Res 1999;59(18):4668–4674. Epub 1999/09/24.
  • Murray JC, Barnett G, Tas M, et al. Immunohistochemical analysis of endothelial-monocyte-activating polypeptide-II expression in vivo. Am J Pathol 2000;157(6):2045–2053. Epub 2000/12/07.
  • Crippa L, Gasparri A, Sacchi A, et al. Synergistic damage of tumor vessels with ultra low-dose endothelial-monocyte activating polypeptide-II and neovasculature-targeted tumor necrosis factor-alpha. Cancer Res 2008;68(4):1154–1161. Epub 2008/02/19.
  • Schwarz RE, Schwarz MA. In vivo therapy of local tumor progression by targeting vascular endothelium with EMAP-II. J Surg Res 2004;120(1):64–72. Epub 2004/06/03.
  • Xie H, Xue YX, Liu LB, Liu YH. Endothelial-monocyte-activating polypeptide II increases blood-tumor barrier permeability by down-regulating the expression levels of tight junction associated proteins. Brain Res 2010;1319:13–20. Epub 2010/01/20.
  • Zhang Z, Xue Y, Liu Y, Shang X. Additive effect of low-frequency ultrasound and endothelial monocyte-activating polypeptide II on blood-tumor barrier in rats with brain glioma. Neurosci Lett 2010;481(1):21–25. Epub 2010/07/06.
  • Li Z, Liu YH, Xue YX, et al. Signal mechanisms underlying low-dose endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier. J Mol Neurosci 2012;48(1):291–301. Epub 2012/04/26.
  • Li Z, Liu YH, Xue YX, et al. Mechanisms for endothelial monocyte-activating polypeptide-II-induced opening of the blood-tumor barrier. J Mol Neurosci 2012;47(2):408–417. Epub 2011/10/05.
  • Xie H, Xue YX, Liu LB, et al. Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood-tumor barrier: role of RhoA/ROCK signaling in EMAP II opening of the BTB. J Mol Neurosci 2012;46(3):666–676. Epub 2011/06/08.
  • Berger AC, Alexander HR, Wu PC, et al. Tumour necrosis factor receptor I (p55) is upregulated on endothelial cells by exposure to the tumour-derived cytokine endothelial monocyte- activating polypeptide II (EMAP-II). Cytokine 2000;12(7):992–1000. Epub 2000/07/06.
  • Kayton ML, Libutti SK. Endothelial monocyte activating polypeptide II (EMAP II) enhances the effect of TNF on tumor-associated vasculature. Curr Opin Invest Drugs 2001;2(1):136–138. Epub 2001/08/31.
  • Lans TE, ten Hagen TL, van Horssen R, et al. Improved antitumor response to isolated limb perfusion with tumor necrosis factor after upregulation of endothelial monocyte-activating polypeptide II in soft tissue sarcoma. Ann Surg Oncol 2002;9(8):812–819. Epub 2002/10/11.
  • Lans TE, Van Horssen R, Eggermont AM, Ten Hagen TL. Involvement of endothelial monocyte activating polypeptide II in tumor necrosis factor-alpha-based anti-cancer therapy. Anticancer Res 2004;24(4):2243–2248. Epub 2004/08/28.
  • Lee YS, Han JM, Kang T, et al. Antitumor activity of the novel human cytokine AIMP1 in an in vivo tumor model. Mol Cells 2006;21(2):213–217. Epub 2006/05/10.
  • Han JM, Myung H, Kim S. Antitumor activity and pharmacokinetic properties of ARS-interacting multi-functional protein 1 (AIMP1/p43). Cancer Lett 2010;287(2):157–164. Epub 2009/07/04.
  • Kim TS, Lee BC, Kim E, et al. Gene transfer of AIMP1 and B7.1 into epitope-loaded, fibroblasts induces tumor-specific CTL immunity, and prolongs the survival period of tumor-bearing mice. Vaccine 2008;26(47):5928–5934. Epub 2008/09/17.
  • Lee BC, O’Sullivan I, Kim E, et al. A DNA adjuvant encoding a fusion protein between anti-CD3 single-chain Fv and AIMP1 enhances T helper type 1 cell-mediated immune responses in antigen-sensitized mice. Immunology 2009;126(1):84–91. Epub 2008/06/13.
  • Kim MS, Kim S, Myung H. Degradation of AIMP1/p43 induced by hepatitis C virus E2 leads to upregulation of TGF-beta signaling and increase in surface expression of gp96. PloS One 2014;9(5):e96302. Epub 2014/05/13.
  • Hou Y, Plett PA, Ingram DA, et al. Endothelial-monocyte-activating polypeptide II induces migration of endothelial progenitor cells via the chemokine receptor CXCR3. Exp Hematol 2006;34(8):1125–1132. Epub 2006/07/26.
  • Awasthi N, Schwarz MA, Verma V, et al. Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling. Lab Invest 2009;89(1):38–46. Epub 2008/11/13.
  • Kwon HS, Park MC, Kim DG, et al. Identification of CD23 as a functional receptor for the proinflammatory cytokine AIMP1/p43. J Cell Sci 2012. Oct 1;125(Pt 19):4620–4629. Epub 2012/07/07.
  • Park H, Park SG, Kim J, et al. Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43. Cytokine 2002;20(4):148–153. Epub 2003/01/25.
  • Kim SY, Son WS, Park MC, et al. AIMP1 induces proliferation of human bone marrow derived mesenchymal stem cells by accumulation of beta-catenin via FGFR2-mediated activation of Akt. Stem Cells Dev 2013. Oct 1;22(19):2630–2640. Epub 2013/05/16.
  • Journeay WS, Janardhan KS, Singh B. Expression and function of endothelial monocyte-activating polypeptide-II in acute lung inflammation. Inflamm Res 2007;56(5):175–181. Epub 2007/03/30.
  • Clauss M, Voswinckel R, Rajashekhar G, et al. Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke-induced emphysema in mice. J Clin Invest 2011;121(6):2470–2479. Epub 2011/05/18.
  • Schluesener HJ, Seid K, Zhao Y, Meyermann R. Localization of endothelial-monocyte-activating polypeptide II (EMAP II), a novel proinflammatory cytokine, to lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis: expression by monocytes and activated microglial cells. Glia 1997;20(4):365–372. Epub 1997/08/01.
  • Schluesener HJ, Seid K, Meyermann R. Effects of autoantigen and dexamethasone treatment on expression of endothelial-monocyte activating polypeptide II and allograft-inflammatory factor-1 by activated macrophages and microglial cells in lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis. Acta Neuropathol 1999;97(2):119–126. Epub 1999/02/03.
  • Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, et al. Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. J Immunol. 2009;183(11):7119–7128. Epub 2009/11/18.
  • Zhu X, Liu Y, Yin Y, et al. MSC p43 required for axonal development in motor neurons. Proc Natl Acad Sci USA 2009;106(37):15944–15949. Epub 2009/09/01.
  • Feinstein M, Markus B, Noyman I, et al. Pelizaeus–Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am J Hum Genet 2010;87(6):820–828. Epub 2010/11/26.
  • Biancheri R, Rossi A, Zara F, Filocamo M. AIMP1/p43 mutation and PMLD. Am J Hum Genet 2011;88(3):391; author reply 3–5. Epub 2011/03/15.
  • Boespflug-Tanguy O, Aubourg P, Dorboz I, et al. Neurodegenerative disorder related to AIMP1/p43 mutation is not a PMLD. Am J Hum Genet 2011;88(3):392–393; author reply 3–5. Epub 2011/03/15.
  • Armstrong L, Biancheri R, Shyr C, et al. AIMP1 deficiency presents as a cortical neurodegenerative disease with infantile onset. Neurogenetics 2014;15(3):157–159. Epub 2014/06/25.
  • Jonuleit H, Kuhn U, Muller G, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997;27(12):3135–3142. Epub 1998/02/17.
  • Mailliard RB, Wankowicz-Kalinska A, Cai Q, et al. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004;64(17):5934–5937. Epub 2004/09/03.
  • Pedersen AE, Thorn M, Gad M, et al. Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol 2005;61(2):147–156. Epub 2005/02/03.
  • Trepiakas R, Pedersen AE, Met O, et al. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. Vaccine 2008;26(23):2824–2832. Epub 2008/05/03.
  • Decker WK, Xing D, Li S, et al. Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help. Vaccine 2006;24(16):3203–3216. Epub 2006/02/17.
  • Decker WK, Xing D, Li S, et al. Th-1 polarization is regulated by dendritic-cell comparison of MHC class I and class II antigens. Blood 2009;113(18):4213–4223. Epub 2009/01/28.
  • Hong HJ, Kim E, Jung MY, et al. AIMP1 deficiency enhances airway hyperreactivity in mice via increased TH2 immune responses. Clin Immunol 2012;143(3):256–265. Epub 2012/04/05.
  • Kleijmeer M, Ramm G, Schuurhuis D, et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J Cell Biol 2001;155(1):53–63. Epub 2001/10/03.
  • Kleijmeer MJ, Escola JM, UytdeHaag FG, et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic 2001;2(2):124–137. Epub 2001/03/15.
  • Kleijmeer MJ, Posthuma G, Geuze HJ. Immunoelectron microscopy of antigen processing in dendritic cells. Methods Mol Med 2001;64:387–411. Epub 2001/01/01.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.