992
Views
8
CrossRef citations to date
0
Altmetric
Clinical Study

MCP1 2518 A/G polymorphism affects progression of childhood focal segmental glomerulosclerosis

, , , , &
Pages 1435-1439 | Received 10 Mar 2015, Accepted 15 Jul 2015, Published online: 31 Aug 2015

References

  • Gbadegesin R, Lavin P, Foreman J, Winn M. Pathogenesis and therapy of focal segmental glomerulosclerosis: an update. Pediatr Nephrol. 2011;26(7):1001–1015
  • Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet. 2003;362(9384):629–639
  • Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: Connecting molecular genetics to podocyte physiology. Hum Mol Genet. 2009;18(R2):R185–R194
  • Cattran DC, Rao P. Long-term outcome in children and adults with classic focal segmental glomerulosclerosis. Am J Kidney Dis. 1998;32(1):72–79
  • Gipson D, Chin H, Presler T, et al. Differential risk of remission and ESRD in childhood FSGS. Pediatr Nephrol. 2006;21(3):344–349
  • Troyanov S, Wall CA, Miller JA, Scholey JW, Cattran DC, Toronto Glomerulonephritis Registry Group. Focal and segmental glomerulosclerosis: definition and relevance of a partial remission. J Am Soc Nephrol. 2005;16(4):1061–1068
  • Yadav A, Saini V, Arora S. MCP-1: Chemoattractant with a role beyond immunity: A review. Clin Chim Acta. 2010;411(21–22):1570–1579
  • Eardley KS, Zehnder D, Quinkler M, et al. The relationship between albuminuria, MCP-1//CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int. 2006;69(7):1189–1197
  • Burton CJ, Combe C, Walls J, Harris KPG. Secretion of chemokines and cytokines by human tubular epithelial cells in response to proteins. Nephrol Dial Transpl. 1999;14(11):2628–2633
  • Wasilewska A, Zoch-Zwierz W, Taranta-Janusz K, Kołodziejczyk Z. Urinary monocyte chemoattractant protein-1 excretion in children with glomerular proteinuria. Scand J Urol Nephrol. 2011;45(1):52–59
  • Steinmetz OM, Panzer U, Harendza S, et al. No association of the–2518 MCP-1 A/G promoter polymorphism with incidence and clinical course of IgA nephropathy. Nephrol Dial Transpl. 2004;19(3):596–601
  • Mori H, Kaneko Y, Narita I, et al. Monocyte chemoattractant protein-1 A-2518G gene polymorphism and renal survival of Japanese patients with immunoglobulin A nephropathy. Clin Exp Nephrol. 2005;9(4):297–303
  • Su N, Li HY, Huang MF, Jiang ZP, Zhou TB. Association of monocyte chemoattractant protein-1 2518G/A gene polymorphism with diabetic nephropathy risk. J Recept Signal Transduct Res. 2014;35(1):94–97
  • Malafronte P, Vieira JM, Pereira AC, Krieger JE, Barros RT, Woronik V. Association of the MCP-1−2518 A/G polymorphism and no association of its receptor CCR2−64 V/I polymorphism with lupus nephritis. J Rheumatol. 2010;37(4):776–782
  • Vielhauer V, Berning E, Eis V, et al. CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int. 2004;66(6):2264–2278
  • Kim MJ, Tam FWK. Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta. 2011;412(23–24):2022–2030
  • Ueda A, Okuda K, Ohno S, et al. NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol. 1994;153(5):2052–2063
  • Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun. 1999;259(2):344–348
  • Kim HL, Lee DS, Yang SH, et al. The polymorphism of monocyte chemoattractant protein-1 is associated with the renal disease of SLE. Am J Kidney Dis. 2002;40(6):1146–1152
  • Schaefer B, Wühl E. Educational paper: Progression in chronic kidney disease and prevention strategies. Eur J Pediatr. 2012;171(11):1579–1588
  • Ishikura K, Uemura O, Hamasaki Y, et al. Progression to end-stage kidney disease in Japanese children with chronic kidney disease: results of a nationwide prospective cohort study. Nephrol Dial Transpl. 2014;29(4):878–884
  • Fathallah-Shaykh SA, Flynn JT, Pierce CB, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol. 2015;10(4):571–577
  • Lai KN, Leung JCK, Chan LYY, Guo H, Tang SCW. Interaction between proximal tubular epithelial cells and infiltrating monocytes/T cells in the proteinuric state. Kidney Int. 2007;71(6):526–538
  • Nakamura T, Ushiyama C, Suzuki S, et al. The urinary podocyte as a marker for the differential diagnosis of idiopathic focal glomerulosclerosis and minimal-change nephrotic syndrome. Am J Nephrol. 2000;20:175–179
  • Kim JH, Kim BK, Moon KC, Hong HK, Lee HS. Activation of the TGF-β/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int. 2003;64(5):1715–1721
  • Lee EY, Chung CH, Khoury CC, et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am J Physiol Renal Physiol. 2009;297:F85–F94
  • Lee HS. Mechanisms and consequences of TGF-β overexpression by podocytes in progressive podocyte disease. Cell Tissue Res. 2012;347(1):129–140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.