323
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Effect of Sucrose Intake and Growth Conditions on Numbers of Dental Plaque Bacteria Expressing Proteolytic Activity

Pages 313-319 | Received 17 Oct 1995, Accepted 12 Nov 1996, Published online: 11 Jul 2009

References

  • Bennick A, Chau G, Goodlin R, Abrams S, Tustian D, Madapallimattam G. The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after absorption to the human enamel surface. Archives of Oral Biology 1983; 28: 19–27
  • Brown M R W, Williams P. The influence of environment on envelope properties affecting survival of bacteria in infections. Annual Review of Microbiology 1985; 39: 527–556
  • Burne R A., Schilling K, Bowen W H., Yasbin R E. Expression, purification, and characterization of an exo-β-D-fructosidase of Streptococcus mutans. Journal of Bacteriology 1987; 169: 4507–4517
  • Burnett G W., Sherp H W. The distribution of proteolytic and aciduric bacteria in the saliva and in the carious lesion. Oral Surgery, Oral Medicine, Oral Pathology 1951; 4: 469–477
  • Chassy B M., Beall J R., Bielawski R M., Porter E V., Donkersloot J A. Occurrence and distribution of sucrose-metabolizing enzymes in oral streptococci. Infection and Immunity 1976; 14: 408–415
  • Chavira R, Burnett T J., Hageman J H. Assaying proteinases with azocoll. Analytical Biochemistry 1984; 136: 446–450
  • Cowman R A., Perrella M M., Fitzgerald R J. Caseinolytic and glycoprotein hydrolyse activity of Streptococcus mutans. Journal of Dental Research 1976; 55: 391–399
  • de Jong M H., van der Hoeven J S. The growth of oral bacteria on saliva. Journal of Dental Research 1987; 66: 498–505
  • Ellen R P., Balcerzak-Raczkowski I B. Interbacterial aggregation of Actinomyces naeslundii and dental plaque streptococci. Journal of Periodontal Research 1977; 12: 11–20
  • Frazier W C. A method for the detection of changes in gelatin due to bacteria. Journal of Infectious Diseases 1926; 39: 302–309
  • Gibbons R J., Hay D I., Childs W C., Davis G. Role of cryptic receptors (cryptitopes) in bacterial adhesion to oral surfaces. Archives of Oral Biology 1990; 35: 107S–114S
  • Grenier D. Effect of proteolytic enzymes on the lysis and growth of oral bacteria. Oral Microbiology and Immunology 1994; 9: 224–228
  • Hamada S, Ooshima T. Production and properties of bacteriocins (mutacins) from Streptococcus mutans. Archives of Oral Biology 1975; 20: 641–648
  • Hardy L, Jacques N A., Forester H, Campbell L K., Knox K W., Wicken A J. Effect of fructose and other carbohydrates on the surface properties, lipoteichoic acid production, and extracellular proteins of Streptococcus mutans Ingbritt grown in continuous culture. Infection and Immunity 1981; 31: 78–87
  • Hudson M C., Curtiss R. Regulation of expression of Streptococcus mutans genes important to virulence. Infection and Immunity 1990; 58: 464–470
  • Ishikawa I, Nogushi T, Kinoshita S. High proteolytic activity in the periodontal pocket. Journal of Dental Research 1974; 53: 502
  • Janda W M., Kuramitsu H K. Regulation of extracellular glucosyltransferase production and the relationship between extracellular and cell-associated activities in Streptococcus mutans. Infection and Immunity 1976; 14: 191–202
  • Jensen S B., Löe H, Schiøtt C R., Theilade E. Experimental gingivitis in man. IV. Vancomycin induced changes in bacterial plaque composition as related to development of gingival inflammation. Journal of Periodontal Research 1968; 3: 284–293
  • Johnson J L., Moore L V H, Kaneko B, Moore W E C. Actinomyces georgiae sp. nov., Actinomyces gerencseriae sp. Nov., designation of two genospecies of Actinomyces naeslundii, and inclusion of A. naeslundii serotypes II and III and Actinomyces viscosus serotypes II in A. naeslundii genospecies 2. International Journal of Systematic Bacteriology 1990; 40: 273–286
  • Kelstrup J, Gibbons R J. Bacteriocin from human and rodent streptococci. Archives of Oral Biology 1969; 69: 251–258
  • Kilian M, Mikkelsen L, Henrichsen J. Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). International Journal of Systematic Bacteriology 1989; 39: 471–484
  • Knuuttila M L E, Mäkinen K K. Extracellular hydrolase activity of the cells of the oral bacterium Streptococcus mutans isolated from man and grown on glucose or xylitol. Archives of Oral Biology 1981; 26: 899–904
  • Larmas M, Mäkinen K K. Histochemical demonstration of enzymes hydrolyzing N-L-arginyl- and N-L-propyl-2-naphthylamine in human carious dentine. Caries Research 1972; 6: 60–65
  • Liljemark W F., Schauer S V. Studies on the bacterial components which bind Streptococcus sanguis and Streptococcus mutans to hydroxyapatite. Archives of Oral Biology 1975; 20: 609–615
  • Mäkinen K K., Paunio K U. Studies on oral enzymes. VI. Hydrolysis of periodontal collagen by plaque enzyme extracts. Acta Odontologica Scandinavica 1966; 24: 733–745
  • Mayer R M. Dextranase: A glucosyltrans-ferase from Streptococcus sanguis. Methods in Enzymology 1987; 138: 649–661
  • McBride B C., Gisslow M T. Role of sialic acid in saliva-induced aggregation of Streptococcus sanguis. Infection and Immunity 1977; 18: 35–40
  • Mikkelsen L. Influence of sucrose intake on saliva and number of microorganisms and acidogenic potential in early dental plaque. Microbial Ecology in Health and Disease 1993; 6: 253–264
  • Mikkelsen L. Effect of sucrose intake on numbers of bacteria in plaque expressing extracellular carbohydrate metabolizing enzymes. Caries Research 1996; 30: 65–70
  • Mooser G, Wong C. Isolation of a glucanbinding domain of glucosyltransferase (1,6-α-glucan synthase) from Streptococcus sobrinus. Infection and Immunity 1988; 56: 880–884
  • Nakamura M, Slots J. Salivary enzymes. Origin and relationship to periodontal disease. Journal of Periodontal Research 1983; 18: 559–569
  • Neidhardt F C., Magasanik B. Inhibitory effect of glucose on enzyme formation. Nature 1956; 178: 801–802
  • Oakley C L., Warrack G H., van Heyningen W E. The collagenase (ktoxin) of Cl. welchii type A. Journal of Pathology and Bacteriology 1946; 58: 229–235
  • Rogers A H., Zilm P S., Gully N J., Pfennig A L. Some aspects of protease production by a strain of Streptococcus sanguis. Oral Microbiology and Immunology 1990; 5: 72–76
  • Schultz-Haudt S D., Sherp H W. Lysis of collagen by human gingival bacteria. Proceedings of the Society for Experimental Biology and Medicine 1955; 89: 697–700
  • Slots J, Genco R J. Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. Journal of Dental Research 1984; 63: 412–421
  • Söder P -Ö, Frostell G. Proteolytic activity of dental plaque material. I. Action of dental plaque material on azocoll, casein and gelatin. Acta Odontologica Scandinavica 1966; 24: 501–515
  • Staat R H., Langley S D., Doyle R J. Streptococcus mutans adherence: Presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infection and Immunity 1980; 27: 675–681
  • Uitto V-J. Degradation of basement membrane collagen by proteinases from human gingiva, leucocytes and bacterial plaque. Journal of Periodontology 1983; 54: 740–745
  • Whaley D N., Dowell V R., Wanderlinder L M., Lombard G L. Gelatin agar medium for detecting gelatinase production by anaerobic bacteria. Journal of Clinical Microbiology 1982; 16: 224–229