217
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells

, , , , , , , , & show all
Pages 177-184 | Received 03 Oct 2013, Accepted 26 Dec 2013, Published online: 20 Jan 2014

References

  • Fairweather, D., and N. R. Rose 2004. Women and autoimmune diseases. Emerg. Infect. Dis. 10: 2005–2011
  • West, I. C. 2000. Radicals and oxidative stress in diabetes. Diabet. Med. 17: 171–180
  • Sivitz, W. I., and M. A. Yorek. 2010. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox. Signal. 12: 537–577
  • Hitchon, C. A., and H. S. El-Gabalawy. 2004. Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6: 265–278
  • Tran, B., S. Oliver, J. Rosa, and P. Galassetti. 2012. Aspects of inflammation and oxidative stress in pediatric obesity and type 1 diabetes: an overview of ten years of studies. Exp. Diabetes Res. 2012: 1–7
  • Kurimoto, C., S. Kawano, G. Tsuji, et al. 2007. Thioredoxin may exert a protective effect against tissue damage caused by oxidative stress in salivary glands of patients with Sjögren’s syndrome. J. Rheumatol. 34: 2035–2043
  • Watts, G. F., and D. A. Playford. 1998. Dyslipoproteinaemia and hyperoxidative stress in the pathogenesis of endothelial dysfunction in non-insulin dependent diabetes mellitus: an hypothesis. Atherosclerosis. 141: 17–30
  • West, I. C. 2000. Radicals and oxidative stress in diabetes. Diabet Med. 17: 171–180
  • Cejková, J., T. Ardan, C. Cejka, et al. 2009. Ocular surface injuries in autoimmune dry eye. The severity of microscopical disturbances goes parallel with the severity of symptoms of dryness. Histol. Histopathol. 24(10): 1357–1365
  • Nobuhara, Y., S. Kawano, G. Kageyama, et al. 2007. Is SS-A/Ro52 a hydrogen peroxide-sensitive signaling molecule? Antioxid. Redox. Signal. 9: 385–391
  • Dickinson, D., K. Gillespie, I. Kodani, et al. 2008. Potential role of an abnormal proliferative; reparative response in initiation and maintenance of Sjögren’s syndrome; and the beneficial effects of green tea polyphenols. In Autoimmunity: Role; Regulation and Disorders, L. Vogel Fynn and L. F. Zimmermann, eds. Nova Science Publishers, Inc., Hauppauge, NY. p. 1–18
  • Gillespie, K., I. Kodani, D. P. Dickinson, et al. 2008. Effects of oral consumption of the green tea polyphenol EGCG in a murine model for human Sjogren’s syndrome; an autoimmune disease. Life Sci. 83: 581–588
  • Ohno, S., H. Yu, D. Dickinson, et al. 2012. Epigallocatechin-3-gallate modulates antioxidant and DNA repair-related proteins in exocrine glands of a primary Sjogren’s syndrome mouse model prior to disease onset. Autoimmunity. 45: 540–546
  • Frei, B., and J. V. Higdon. 2003. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J. Nutr. 133: 3275S–3284S
  • Walters, M. T., C. E. Rubin, S. J. Keightley, et al. 1986. A double-blind; cross-over; study of oral N-acetylcysteine in Sjögren’s syndrome. Scand. J. Rheumatol. Suppl. 61: 253–258
  • McKendry, R. J. 1982. Treatment of Sjogren’s syndrome with essential fatty acids; pyridoxine and vitamin C. Prostaglandins Leukot. Med. 8: 403–408
  • Hsu, S., D. Dickinson, J. Borke, et al. 2007. Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model. Exp. Dermatol. 16: 678–684
  • Hsu, S., and D. Dickinson. 2009. Mitogen-activated protein kinases and their inhibitors: friend or foe in fighting psoriasis? In: Dermatology Research Focus on Acne; Melanoma and Psoriasis (Dermatology-Laboratory and Clinical Research), D. E. Roth, ed. Nova Science Pub, Inc., Hauppauge, NY. p. 185--192
  • Kyttaris, V. C. 2012. Kinase inhibitors: a new class of antirheumatic drugs. Drug Des. Devel. Ther. 6: 245–250
  • Wu, M., I. Kodani, D. Dickinson, et al. 2009. Exogenous expression of caspase-14 induces tumor suppression in human salivary cancer cells by inhibiting tumor vascularization. Anticancer Res. 29(10): 3811–3818
  • Fu, Z., W. Zhen, J. Yuskavage, and D. Liu. 2011. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br. J. Nutr. 105: 1218–1225
  • Papaccio, G., B. De Luca, and F. A. Pisanti. 1998. Macrophages and antioxidant status in the NOD mouse pancreas. J. Cell Biochem. 71: 479–490
  • Sabitha, V., S. Ramachandran, K. R. Naveen, and K. Panneerselvam. 2012. Investigation of in vivo antioxidant property of Abelmoschus esculentus (L) moench. fruit seed and peel powders in streptozotocin-induced diabetic rats. J. Ayurveda Integr. Med. 3: 188–193
  • Power, J. H., S. Asad, T. K. Chataway, et al. 2008. Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer’s disease pathology. Acta Neuropathol. 115: 611–622
  • Fatma, N., E. Kubo, M. Sen, et al. 2008. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca(2+) homeostasis. Brain Res. 1233: 63–78
  • Kubo, E., N. Fatma, Y. Akagi, et al. 2008. TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am. J. Physiol. Cell Physiol. 294: C842–C855
  • Wang, Y., S. I. Feinstein, and A. B. Fisher. 2008. Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced oxidative stress. J. Cell Biochem. 104: 1274–1285
  • Kümin, A., C. Huber, T. Rülicke, et al. 2006. Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am. J. Pathol. 169: 1194–1205
  • Kümin, A., M. Schäfer, N. Epp, et al. 2007. Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J. Cell Biol. 179: 747–760
  • Zhang, G., and S. Wang. 2007. Proteomic approach to substrates related to MAPK pathway in 293T cells. Cell Biol. Int. 31: 1–10
  • Yamamoto, T., H. Digumarthi, Z. Aranbayeva, et al. 2007. EGCG-targeted p57/KIP2 reduces tumorigenicity of oral carcinoma cells: role of c-Jun N-terminal kinase. Toxicol. Appl. Pharmacol. 224: 318–325
  • Adachi, S., M. Shimizu, Y. Shirakami, et al. 2009. (-)-Epigallocatechin gallate downregulates EGF receptor via phosphorylation at Ser1046/1047 by p38 MAPK in colon cancer cells. Carcinogenesis. 30: 1544–1552
  • Pullikotil, P., H. Chen, R. Muniyappa, et al. 2012. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α. J. Nutr. Biochem. 23: 1134–1145
  • Shanafelt, T. D., T. G. Call, C. S. Zent, et al. 2013. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 119: 363–370

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.