427
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Effector and regulatory T cell subsets in diabetes-associated inflammation. Is there a connection with ST2/IL-33 axis? Perspective

, &
Pages 361-371 | Received 30 Oct 2013, Accepted 19 Jan 2014, Published online: 19 Feb 2014

References

  • Patterson, C. C., G. G. Dahlquist, E. Gyürüs, et al. 2000. EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 13: 2027–2033
  • Schramm, M. T., N. Chaturvedi, C. Schalkwijk, et al. 2003. The EURODIAB prospective complications study group: vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes. Diabetes Care 26: 2165–2173
  • Goldberg, R. B. 2009. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab. 94: 3171–3182
  • King, G. L. 2008. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol. 79: 1527–1534
  • Rask-Madsen, C., and G. L. King. 2013. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell. Metab. 17: 20–33
  • Picardi, A., M. G. Valorani, U. Vespasiani Gentilucci, et al. 2007. IMDIAB Group. Raised C-reactive protein levels in patients with recent onset type 1 diabetes. Diabetes. Metab. Res. Rev. 23: 211–214
  • Chase, H. P., S. Cooper, I. Osberg, et al. 2004. Elevated C-reactive protein levels in the development of type 1 diabetes. Diabetes 53: 2569–2573
  • Targer, G., L. Zenari, L. Bertolini, et al. 2001. Elevated levels of interleukin-6 in young adults with type 1 diabetes without clinical evidence of microvascular and macrovascular complications. Diabetes Care 24: 956–957
  • Schölin, A., A. Siegbahn, L. Lind, et al. 2004. Diabetes incidence study in Sweden group. CRP and IL-6 concentrations are associated with poor glycemic control despite preserved beta-cell function during the first year after diagnosis of type 1 diabetes. Diabetes. Metab. Res. Rev. 20: 205–210
  • Devaraj, S., N. Glaser, S. Griffen, et al. 2006. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55: 774–779
  • Myśliwska, J., M. Smardzewski, N. Marek-Trzonkowska, et al. 2012. Expansion of CD14+CD16+ monocytes producing TNF-α in complication-free diabetes type 1 juvenile onset patients. Cytokine 60: 309–317
  • Gustavsson, C., E. Agardh, B. Bengtsson, and C. D. Agardh. 2008. TNF-alpha is an independent serum marker for proliferative retinopathy in type 1 diabetic patients. J. Diabet. Complications. 22: 309–316
  • Aiello, L. P., and J. S. Wong. 2000. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney. Int. Suppl. 77: S113–S119
  • Schrijvers, B. F., A. Flyvbjerg, and A. S. De Vriese. 2004. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney. Int. 65: 2003–2017
  • Yoo, S. A., D. G. Bae, J. W Ryoo, et al. 2005. Arginine-rich anti-vascular endothelial growth factor (anti-VEGF) hexapeptide inhibits collagen-induced arthritis and VEGF-stimulated productions of TNF-alpha and IL-6 by human monocytes. J. Immunol. 174: 5846–5855
  • Myśliwiec, M., K. Zorena, A. Balcerska, et al. 2006. The activity of N-acetyl-beta-D-glucosaminidase and tumor necrosis factor-alpha at early stage of diabetic retinopathy development in type 1 diabetes mellitus children. Clin. Biochem. 39: 851–856
  • Ryba, M., K. Rybarczyk-Kapturska, K. Zorena, et al. 2011. Lower frequency of CD62Lhigh and higher frequency of TNFR2+ Tregs are associated with inflammatory conditions in type 1 diabetic patients. Med. Inflamm. 2011: 645643
  • Galassetti, P. R., K. Iwanaga, A. M. Pontello, et al. 2006. Effect of prior hyperglycemia on IL-6 responses to exercise in children with type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 290: E833–E839
  • Ryba-Stanisławowska, M., M. Skrzypkowska, J. Myśliwska, and M. Myśliwiec. 2013. The serum IL-6 profile and Treg/Th17 peripheral cell populations in patients with type 1 diabetes. Med. Inflamm. 2013: 205284
  • Shelbaya, S., H. Amer, S. Seddik, et al. 2012. Study of the role of interleukin-6 and highly sensitive C-reactive protein in diabetic nephropathy in type 1 diabetic patients. Eur. Rev. Med. Pharmacol. Sci. 16: 176–182
  • Cheung, C. M., M. Vania, M. Ang, et al. 2012. Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol. Vis. 18: 830–837
  • Mirończuk, K., A. Okruszko, N. Wawrusiewicz-Kurylonek, et al. 2005. Interleukin 18 and sICAM-1 serum levels in families with type 1 diabetes mellitus. Rocz. Akad. Med. Bialymst. 50: 151–154
  • Nicoletti, F., I. Conget, R. Di Marco, et al. 2001. Serum levels of the interferon-γ-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes. Diabetologia 44: 309–311
  • Kretowski, A., K. Mironczuk, A. Karpinska, et al. 2002. Interleukin-18 promoter polymorphisms in type 1 diabetes. Diabetes 51: 3347–3349
  • Mojtahedi, Z., S. Naeimi, S. Farjadian, et al. 2006. Association of IL-18 promoter polymorphisms with predisposition to type 1 diabetes. Diabet. Med. 23: 235–239
  • Szeszko, J. S., J. M. Howson, J. D. Cooper, et al. 2006. Analysis of polymorphisms of the interleukin-18 gene in type 1 diabetes and Hardy–Weinberg equilibrium testing. Diabetes 55: 559–562
  • Blazhev, A., G. Nicoloff, Ch. Petrova, and P. Jordanova-Laleva. 2006. Serum levels of interleukin 12 and interleukin 18 in diabetic children. Diabetol. Croat. 1: 3–6
  • Mahmoud, R. A. el-Ezz and A. S. Hegazy. 2004. Increased serum levels of interleukin-18 in patients with diabetic nephropathy. Ital. J. Biochem. 53: 73–81
  • Katakami, N., H. Kaneto, M. Matsuhisa, et al. 2007. Serum interleukin-18 levels are increased and closely associated with various soluble adhesion molecule levels in type 1 diabetic patients. Diabetes Care 30: 159–161
  • Gverović Antunica, A., K. Karaman, L. Znaor, et al. 2012. IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients. Graefe's Arch. Clin. Exp. Ophthalmol. 250: 815–821
  • Baekkevold, E. S., M. Roussigné, T. Yamanaka, et al. 2003. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol. 163: 69–79
  • Schmitz, J., A. Owyang, E. Oldham, et al. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479–490
  • Haraldsen, G., J. Balogh, J. Pollheimer, et al. 2009. Interleukin-33-cytokine of dual function or novel alarmin. Trends. Immunol. 30: 3227–2233
  • Liew, F. Y., N. I. Pitman, and I. B. McInnes. 2010. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10: 103–110
  • Hayakawa, H., M. Hayakawa, A. Kume, and S. Tominaga. 2007. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem. 282: 26369–26380
  • Milovanovic, M., V. Volarevic, G. Radosavljevic, et al. 2012. IL-33/ST2 axis in inflammation and immunopathology. Immunol. Res. 52: 89–99
  • Kuroiwa, K., T. Arai, H. Okazaki, et al. 2001. Identification of human ST2 protein in the sera of patients with autoimmune diseases. Biochem. Biophys. Res. Commun. 284: 1104–1108
  • Pastorelli, L., C. De Salvo, M. A. Cominelli, et al. 2011. Novel cytokine signaling pathways in inflammatory bowel disease: insight into the dichotomous functions of IL-33 during chronic intestinal inflammation. Therap. Adv. Gastroenterol. 4: 311–323
  • Kurokawa, M., S. Matsukura, M. Kawaguchi, et al. 2011. Expression and effects of IL-33 and ST2 in allergic bronchial asthma: IL-33 induces eotaxin production in lung fibroblasts. Int. Arch. Allergy Immunol. 155: 12–20
  • Oboki, K., S. Nakae, K. Matsumoto, and H. Saito. 2011. IL-33 and airway inflammation. Allergy Asthma Immunol. Res. 3: 81–88
  • Kageyama, Y., E. Torikai, and K. Tsujimura. 2012. Involvement of IL-33 in the pathogenesis of rheumatoid arthritis: the effect of etanercept on the serum levels of IL-33. Mod. Rheumatol. 22: 89–93
  • Komai-Koma, M., D. Xu, Y. Li, et al. 2007. IL-33 is a chemoattractant for human Th2 cells. Eur. J. Immunol. 37: 2779–2786
  • Xu, D., W. L. Chan, B. P. Leung, et al. 1998. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med. 187: 787–794
  • Sims, J. E., and D. E. Smith. 2010. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10: 89–102
  • Guo, L., G. Wei, J. Zhu, et al. 2009. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl. Acad. Sci. USA 106: 13463–13468
  • Rank, M. A., T. Kobayashi, H. Kozaki, et al. 2009. IL-33-activated dendritic cells induce an atypical TH2-type response. J. Allergy. Clin. Immunol. 123: 1047–1054
  • Humphreys, N. E., D. Xu, M. R. Hepworth, et al. 2008. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 180: 2443–2449
  • Sanada, S., D. Hakuno, L. J. Higgins, et al. 2007. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117: 1538–1549
  • Miller, A. M., D. L. Asquith, A. J. Hueber, et al. 2010. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ. Res. 107: 650–658
  • Miller, A. M., D. Xu, D. L. Asquith, et al. 2008. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205: 339–346
  • Kurowska-Stolarska, M., P. Kewin, G. Murphy, et al. 2008. IL-33 induces antigenspecific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J. Immunol. 181: 4780–4790
  • Xu, D., H. R. Jiang, P. Kewin, et al. 2008. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc. Natl. Acad. Sci. USA 105: 10913–10918
  • Pushparaj, P. N., H. K. Tay, S. C. H'ng, et al. 2009. The cytokine interleukin-33 mediates anaphylactic shock. Proc. Natl. Acad. Sci. USA 106: 9773–9778
  • Zdravkovic, N., Shahin, A., Arsenijevic, N., et al. 2008. Regulatory T cells and ST2 signaling control diabetes induction with multiple low doses of streptozotocin. Mol. Immunol. 47: 28–36
  • Atkinson, M. A., and E. H. Leiter. 1999. The NOD mouse model of type 1 diabetes: as good as it gets? Nat. Med. 6: 601–604
  • Curotto de Lafaille, M. A., and J. J. Lafaille. 2009. Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30: 626–635
  • Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061
  • Ziegler, S. F. 2006. FOXP3: of mice and men. Annu. Rev. Immunol. 24: 209–226
  • Thornton, A. M., C. A. Piccirillo, and E. M. Shevach. 2004. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur. J. Immunol. 34: 366–376
  • Paul, W. E. 2010. What determines Th2 differentiation, in vitro and in vivo? Immunol. Cell. Biol. 88: 236–239
  • Passerini, L., S. E. Allan, M. Battaglia, et al. 2008. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25- effector T cells. Int. Immunol. 20: 421–431
  • Liu, W., A. L. Putnam, Z. Xu-Yu, et al. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203: 1701–1711
  • Chatenoud, L., B. Salomon, and J. A. Bluestone. 2001. Suppressor T cells—they’re back and critical for regulation of autoimmunity! Immunol. Rev. 182: 149–163
  • Ryba, M., N. Marek, Ł. Hak, et al. 2011. Anti-TNF rescue CD4+Foxp3+ regulatory T cells in patients with type 1 diabetes from effects mediated by TNF. Cytokine 55: 353–361
  • Brusko, T. M., C. H. Wasserfall, M. J. Clare-Salzler, et al. 2005. Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414
  • Kukreja, A., G. Cost, J. Marker, et al. 2002. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109: 131–140
  • Viglietta, V., C. Baecher–Allan, H. L. Weiner, and D. A. Hafler. 2004. Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199: 971–979
  • Ehrenstein, M. R., J. G. Evans, A. Singh, et al. 2004. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF-α therapy. J. Exp. Med. 200: 277–285
  • Ricciardelli, I., K. J. Lindley, M. Londei, and S. Quaratino. 2008. Anti tumour necrosis-α therapy increases the number of FOXP3+ regulatory T cells in children affected by Crohn’s disease. Immunology 125: 178–183
  • Valencia, X., G. Stephens, R. Goldbach-Mansky, et al. 2006. TNF-α down-modulates the function of human CD4+ CD25hi T regulatory cells. Blood 108: 253–261
  • Ryba-Stanisławowska, M., M. Skrzypkowska, M. Myśliwiec, and J. Myśliwska. 2013. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes. Hum. Immunol. 74: 701–707
  • Brusko, T., C. Wasserfall, K. McGrail, et al. 2007. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56: 604–612
  • Marek-Trzonkowska, N., M. Mysliwiec, A. Dobyszuk, et al. 2012. Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35: 1817–1820
  • Marek-Trzonkowska, N., M. Myśliwec, J. Siebert, and P. Trzonkowski. 2013. Clinical application of regulatory T cells in type 1 diabetes. Pediatr. Diabetes 14: 322–332
  • Putnam, A. L., T. M. Brusko, M. R. Lee, et al. 2009. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58: 652–662
  • Łuczyński, W., N. Wawrusiewicz-Kurylonek, A. Szypowska, et al. 2012. Generation of T regulatory cells in children with newly diagnosed type 1 diabetes mellitus. Exp. Clin. Endocrinol. Diabet. 120: 101–109
  • Cobb, D., and R. B. Smeltz. 2012. Regulation of proinflammatory Th17 responses during trypanosoma cruzi infection by IL-12 family cytokines. J. Immunol. 188: 3766–3773
  • Cook, A. 2006. Th17 cells in inflammatory conditions. Rev. Diabet. Stud. 3: 72–75
  • Zhang, L., Y. G. Li, Y. H. Li, et al. 2012. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PloS One 7: e31000
  • Wilke, C. M., L. Wang, S. Wei, et al. 2011. Endogenous interleukin-10 constrains Th17 cells in patients with inflammatory bowel disease. J. Transl. Med. 9: 217
  • Montes, M., X. Zhang, L. Berthelot, et al. 2009. Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin. Immunol. 130: 133–144
  • Korn, T., M. Oukka, V. Kuchroo, and E. Bettelli. 2007. Th17 cells: effector T cells with inflammatory properties. Semin. Immunol. 19: 362–371
  • Marwaha, A. K., S. Q. Crome, C. Panagiotopoulos, et al. 2010. Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J. Immunol. 185: 3814–3818
  • Alunno, A., E. Bartoloni, O. Bistoni, et al. 2012. Balance between regulatory T and Th17 cells in systemic lupus erythematosus: the old and the new. Clin. Dev. Immunol. 2012: 823085
  • Shao, X. S., X. Q. Yang, X. D. Zhao, et al. 2009. The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr. Nephrol. 24: 1683–1690
  • Cheng, X., X. Yu, Y. J. Ding, et al. 2008. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 127: 89–97
  • Kimura, A., and T. Kishimoto. 2010. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 40: 1830–1835
  • Sallusto, F., and C. E. Zielinski. 2012. Human Th17 subsets. Eur. J. Immunol. 42: 2215–2220
  • Kuchroo, V. K., and A. Awasthi. 2012. Emerging new roles of Th17 cells. Eur. J. Immunol. 42: 2211–2214
  • Marwaha, A. K., N. J. Leung, A. N. McMurchy, and M. K. Levings. 2012. TH17 cells in autoimmunity and immunodeficiency: protective or pathogenic? Front. Immunol. 3: 129
  • Symons, A., A. L. Budelsky, and J. E. Towne. 2012. Are Th17 cells in the gut pathogenic or protective? Mucosal Immunol. 5: 4–6
  • Annunziato, F., L. Cosmi, V. Santarlasci, et al. 2007. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204: 1849–1861
  • Beriou, G., C. M. Costantino, C. W. Ashley, et al. 2009. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113: 4240–4249
  • Voo, K. S., Y. H. Wang, F. R. Santori, et al. 2009. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc. Natl. Acad. Sci. USA 106: 4793–4798
  • Ayyoub, M., F. Deknuydt, I. Raimbaud, et al. 2009. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc. Natl. Acad. Sci. USA 106: 8635–8640
  • Ziegler, S. F. FOXP3: not just for regulatory T cells anymore. 2007. Eur. J. Immunol. 37: 21–23
  • Ichiyama, K., H. Yoshida, Y. Wakabayashi, et al. 2008. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J. Biol. Chem. 283: 17003–17008
  • Lee, Y. K., R. Mukasa, R. D. Hatton, and C. T. Weaver. 2009. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol. 21: 274–280
  • Trifari, S., C. D. Kaplan, E. H. Tran, et al. 2009. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 10: 864–871
  • Duhen, T., R. Geiger, D. Jarrossay, et al. 2009. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10: 857–863
  • Ikeuchi, H., T. Kuroiwa, N. Hiramatsu, et al. 2005. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum. 52: 1037–1046
  • Andoh, A., Z. Zhang, O. Inatomi, et al. 2005. Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 129: 969–984
  • Brand, S., F. Beigel, T. Olszak, et al. 2006. IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G827–G838
  • Wolk, K., S. Kunz, E. Witte, et al. 2004. IL-22 increases the innate immunity of tissues. Immunity 21: 241–254
  • Kebir, H., K. Kreymborg, I. Ifergan, et al. 2007. Human TH17 lymphocytes promote blood brain barrier disruption and central nervous system inflammation. Nat. Med. 13: 1173–1175
  • Liang, S. C., X. Y. Tan, D. P. Luxenberg, et al. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203: 2271–2279
  • Okey, A. B., M. A. Franc, I. D. Moffat, et al. 2005. Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: the case of the aryl hydrocarbon receptor. Toxicol. Appl. Pharmacol. 207: 43–51
  • Radaeva, S., R. Sun, H. N. Pan, et al. 2004. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39: 1332–1342
  • Zenewicz, L. A., G. D. Yancopoulos, D. M. Valenzuela, et al. 2007. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27: 647–659
  • Zenewicz, L. A., and R. A. Flavell. 2008. IL-22 and inflammation: leukin' through a glass onion. Eur. J. Immunol. 38: 3265–3268
  • Wolk, K., E. Witte, E. Wallace, et al. 2006. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36: 1309–1323
  • Xu, X., S. Zheng, F. Yang, et al. 2013. Increased Th22 cells are independently associated with Th17 cells in type 1 diabetes. Endocrine. [Epub ahead of print]. doi: 10.1007/s12020-013-0030-z
  • Chen, H., F. Wen, X. Zhang, and S. B. Su. 2012. Expression of T-helper-associated cytokines in patients with type 2 diabetes mellitus with retinopathy. Mol. Vis. 18: 219–226
  • Eyerich, S., K. Eyerich, D. Pennino, et al. 2009. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119: 3573–3585
  • Jabeen, R., and M. H. Kaplan. 2012. The symphony of the ninth: the development and function of Th9 cells. Curr. Opin. Immunol. 24: 303–307
  • Veldhoen, M., C. Uyttenhove, J. van Snick, et al. 2008. Transforming growth factor-beta ‘reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9: 1341–1346
  • Chang, H. C., S. Sehra, R. Goswami, et al. 2010. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11: 527–534
  • Dardalhon, V., A. Awasthi, H. Kwon, et al. 2008. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGFbeta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat. Immunol. 9: 1347–1355
  • Jäger, A., V. Dardalhon, R. A. Sobel, et al. 2009. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183: 7169–7177
  • Tan, C., M. K. Aziz, J. D. Lovaas, et al. 2010. Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J. Immunol. 185: 6795–6801
  • Nowak, E. C, C. T. Weaver, H. Turner, et al. 2009. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206: 1653–1660
  • Beriou, G., E. M. Bradshaw, E. Lozano, et al. 2010. TGF-beta induces IL-9 production from human Th17 cells. J. Immunol. 185: 46–54
  • Cretney, E., A. Xin, W. Shi, et al. 2011. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12: 304–311
  • Staudt, V., E. Bothur, M. Klein, et al. 2010. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33: 192–202
  • Satoh, T., O. Takeuchi, A. Vandenbon, et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11: 936–944
  • Ahyi, A. N., H. C. Chang, A. L. Dent, et al. 2009. IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J. Immunol. 183: 1598–1606
  • Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12: 231–238
  • Qin, H., J. D. Trudeau, G. S. Reid, et al. 2004. Progression of spontaneous autoimmune diabetes is associated with a switch in the killing mechanism used by autoreactive CTL. Int. Immunol. 16: 1657–1662
  • DiLorenzo, T. P., and D. V. Serreze. 2005. The good turned ugly: immunopathogenic basis for diabetogenic CD8+ T cells in NOD mice. Immunol. Rev. 204: 250–263
  • Mallone, R., V. Brezar, and C. Boitard. 2011. T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin. Dev. Immunol. 2011: 513210
  • Martinuzzi, E., G. Novelli, M. Scotto, et al. 2008. The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment. Diabetes 57: 1312–1320
  • Walter, U., and P. Santamaria. 2005. CD8+ T cells in autoimmunity. Curr. Opin. Immunol. 17: 624–631
  • Han, B., P. Serra, J. Yamanouchi, et al. 2005. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J. Clin. Invest. 115: 1879–1887
  • Willcox, A., S. J. Richardson, A. J. Bone, et al. 2009. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155: 173–181
  • Moniuszko, M., B. Glowinska-Olszewska, M. Rusak, et al. 2013. Decreased CD127 expression on CD4+ T-cells and elevated frequencies of CD4+CD25+CD127- T-cells in children with long-lasting type 1 diabetes. Clin. Dev. Immunol. 2013: 459210
  • Huber, M., S. Heink, H. Grothe, et al. 2009. A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur. J. Immunol. 39: 1716–1725
  • Kondo, T., H. Takata, F. Matsuki, and M. Takiguchi. 2009. Cutting edge: phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J. Immunol. 182: 1794–1798
  • Saxena, A., S. Desbois, N. Carrié, et al. 2012. Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model. J. Immunol. 189: 3140–3149
  • Tajima, M., D. Wakita, T. Satoh, et al. 2011. IL-17/IFN-γ double producing CD8+ T (Tc17/IFN-γ) cells: a novel cytotoxic T-cell subset converted from Tc17 cells by IL-12. Int. Immunol. 23: 751–759
  • Tang, X. L, T. R. Smith, and V. Kumar. 2005. Specific control of immunity by regulatory CD8 T cells. Cell. Mol. Immunol. 2: 11–19
  • Gilliet, M., and Y. J. Liu. 2002. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195: 695–704
  • Jarvis, L. B., M. K. Matyszak, R. C. Duggleby, et al. 2005. Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur. J. Immunol. 35: 2896–2908
  • James, E. A., and W. W. Kwok. 2007. CD8+ suppressor-mediated regulation of human CD4+ T cell responses to glutamic acid decarboxylase 65. Eur. J. Immunol. 37: 78–86
  • Hak, Ł., J. Więckiewicz, J. Myśliwska, et al. 2007. The CD3+CD8+CD28- and CD3+CD8+CD57+ regulatory T lymphocytes in patients with type 1 diabetes. Pol. J. Environ. Stud. 16: 212–215
  • Filaci, G., D. Fenoglio, M. Fravega, et al. 2007. CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J. Immunol. 179: 4323–4334
  • Liu, Z., S. Tugulea, R. Cortesini, and N. Suciu-Foca. 1998. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28- T cells. Int. Immunol. 10: 775–783
  • Bisikirska, B., J. Colgan, J. Luban, et al. 2005. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest. 115: 2904–2913
  • Ablamunits, V., B. C. Bisikirska, and K. C. Herold. 2008. Human regulatory CD8 T cells. Ann. N. Y. Acad. Sci. 1150: 234–238
  • Mahic, M., K. Henjum, S. Yaqub, et al. 2008. Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T cells by continuous antigen stimulation. Eur. J. Immunol. 38: 640–646
  • Hu, D., H. L. Weiner, and J. Ritz. 2013. Identification of cytolytic CD161- CD56+ regulatory CD8 T cells in human peripheral blood. PLoS One 8: e59545
  • Turnquist, H. R., Z. Zhao, B. R. Rosborough, et al. 2011. IL-33 expands suppressive CD11b+ Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J. Immunol. 187: 4598–4610
  • Duan, L., J. Chen, H. Zhang, et al. 2012. IL-33 ameliorates experimental colitis through promoting Th2/Foxp3(+) Treg responses in mice. Mol. Med. 18: 753–761
  • Wang, Y., M. A. Su, and Y. Y. Wan. 2011. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 35: 337–348
  • Milovanovic, M., V. Volarevic, B. Ljujic, et al. 2012. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of apc to inflammatory phenotype. PLoS One 7: e45225
  • Jiang, H. R., M. Milovanović, D. Allan, et al. 2012. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur. J. Immunol. 42: 1804–1814
  • Wisniewski, J. A, and L. Borish. 2011. Novel cytokines and cytokine-producing T cells in allergic disorders. Allergy Asthma Proc. 32: 83–94
  • Yang, Q., G. Li, Y. Zhu, et al. 2011. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur. J. Immunol. 41: 3351–3360
  • Chan, W. L., N. Pejnovic, C. A. Lee, and N. A. Al-Ali. 2001. Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. J. Immunol. 167: 1238–1244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.