213
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Association of joint erosion with SLC22A4 gene polymorphisms inconsistently associated with rheumatoid arthritis susceptibility

, , &
Pages 313-317 | Received 25 Jul 2014, Accepted 31 Jan 2015, Published online: 24 Feb 2015

References

  • MacGregor, A. J., H. Snieder, A. S. Rigby, et al. 2000. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43: 30–37
  • Gregersen, P. K., J. Silver, and R. J. Winchester. 1987. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30: 1205–1213
  • Viatte, S., D. Plant, and S. Raychaudhuri. 2013. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9: 141–153
  • Tokuhiro, S., R. Yamada, X. Chang, et al. 2003. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35: 341–348
  • Tamai, I., H. Yabuuchi, J. Nezu, et al. 1997. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419: 107–111
  • Wu, X., R. L. George, W. Huang, et al. 2000. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim. Biophys. Acta. 1466: 315–327
  • Yabuuchi, H., I. Tamai, J. Nezu, et al. 1999. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289: 768–773
  • Grundemann, D., S. Harlfinger, S. Golz, et al. 2005. Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA. 102: 5256–5261
  • Barton, A., S. Eyre, J. Bowes, et al. 2005. Investigation of the SLC22A4 gene (associated with rheumatoid arthritis in a Japanese population) in a United Kingdom population of rheumatoid arthritis patients. Arthritis Rheum. 52: 752–758
  • Plant, D., A. Barton, W. Thomson, et al. 2009. A re-evaluation of three putative functional single nucleotide polymorphisms in rheumatoid arthritis. Ann. Rheum. Dis. 68: 1373–1375
  • Newman, B., R. F. Wintle, M. van Oene, et al. 2005. SLC22A4 polymorphisms implicated in rheumatoid arthritis and Crohn's disease are not associated with rheumatoid arthritis in a Canadian Caucasian population. Arthritis Rheum. 52: 425–429
  • Plenge, R. M., L. Padyukov, E. F. Remmers, et al. 2005. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet. 77: 1044–1060
  • Martinez, A., A. Valdivia, D. Pascual-Salcedo, et al. 2006. Role of SLC22A4, SLC22A5, and RUNX1 genes in rheumatoid arthritis. J. Rheumatol. 33: 842–846
  • Orozco, G., E. Sanchez, M. A. Gonzalez-Gay, et al. 2006. SLC22A4, RUNX1, and SUMO4 polymorphisms are not associated with rheumatoid arthritis: a case-control study in a Spanish population. J. Rheumatol. 33: 1235–1239
  • Kuwahara, M., K. Ikari, S. Momohara, et al. 2005. Failure to confirm association between SLC22A4 polymorphism and rheumatoid arthritis in a Japanese population. Arthritis Rheum. 52: 2947–2948
  • Takata, Y., H. Inoue, A. Sato, et al. 2008. Replication of reported genetic associations of PADI4, FCRL3, SLC22A4 and RUNX1 genes with rheumatoid arthritis: results of an independent Japanese population and evidence from meta-analysis of East Asian studies. J. Hum. Genet. 53: 163–173
  • Okada, Y., M. Mori, R. Yamada, et al. 2008. SLC22A4 polymorphism and rheumatoid arthritis susceptibility: a replication study in a Japanese population and a metaanalysis. J. Rheumatol. 35: 1723–1728
  • Ren, T. L., Z. J. Han, C. J. Yang, et al. 2014. Association of SLC22A4 gene polymorphism with Rheumatoid arthritis in the Chinese population. J. Biochem. Mol. Toxicol. 28: 206–210
  • Arnett, F. C., S. M. Edworthy, D. A. Bloch, et al. 1988. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315–324
  • Steinbrocker, O., C. H. Traeger, and R. C. Batterman. 1949. Therapeutic criteria in rheumatoid arthritis. JAMA. 140: 659–662
  • Woolson, R. F., and J. A. Bean. 1982. Mantel-Haenszel statistics and direct standardization. Stat. Med. 1: 37–39
  • Breslow, N. E., and N. E. Day. 1980. Statistical Methods in Cancer Research. Volume I – The Analysis of Case-Control Studies. Lyon: International Agency for Research on Cancer. p. 5–338
  • Cen, H., W. Wang, R. X. Leng, et al. 2013. Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity. 46: 455–462
  • Yang, Y., X. Su, K. Zhang, et al. 2013. The Fc receptor-like 3 gene polymorphisms and susceptibility to autoimmune diseases: an updated meta-analysis. Autoimmunity. 46: 547–558
  • Abecasis, G. R., D. Altshuler, A. Auton, et al. 2010. A map of human genome variation from population-scale sequencing. Nature. 467: 1061–1073
  • Internationl HapMap Consortium. 2005. A haplotype map of the human genome. Nature. 437: 1299–1320
  • Frazer, K. A., D. G. Ballinger, D. R. Cox, et al. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature. 449: 851–861
  • Lee, H. S., K. W. Lee, G. G. Song, et al. 2004. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 50: 3468–3475
  • Scott, D. L. 2000. Prognostic factors in early rheumatoid arthritis. Rheumatology (Oxford). 39 Suppl 1: 24–29
  • Kim, H. Y., J. K. Min, H. I. Yang, et al. 1997. The impact of HLA-DRB1*0405 on disease severity in Korean patients with seropositive rheumatoid arthritis. Br. J. Rheumatol. 36: 440–443
  • Larsen, A., K. Dale, and M. Eek. 1977. Radiographic evaluation of rheumatoid arthritis and related conditions by standard reference films. Acta Radiol. Diagn (Stockh). 18: 481–491
  • Sharp, J. T., M. D. Lidsky, L. C. Collins, et al. 1971. Methods of scoring the progression of radiologic changes in rheumatoid arthritis. Correlation of radiologic, clinical and laboratory abnormalities. Arthritis Rheum. 14: 706–720

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.