372
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Selected biologic markers of inflammation and activity of Crohn’s disease

, , , &
Pages 318-327 | Received 23 Aug 2014, Accepted 31 Jan 2015, Published online: 24 Feb 2015

References

  • Farmer, R. G., W. A. Hawk, and R. B. J. Turnbull. 1975. Clinical patterns in Crohn’s disease: a statistical study of 615 cases. Gastroenetrology. 68: 627–635
  • Louis, E., A. Collard, A. F. Oger, et al. 2001. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut. 49: 777–782
  • Desai, D., W. A. Faubion, and W. J. Sandborn. 2007. Review article: biological activity markers in inflammatory bowel disease. Aliment. Pharmacol. Ther. 25: 247–255
  • Sostegni, R., M. Daperno, N. Scaglione, et al. 2003. Review article: Crohn’s disease: monitoring disease activity. Aliment. Pharmacol. Ther. 17: 11–17
  • Strober, W., and I. J. Fuss. 2011. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 140: 1756–1767
  • Karczewski, J., and M. Karczewski. 2013. Immunoregulatory defect in patients with active Crohn’s disease. Inflamm. Bowe.l Dis. 19: E2–E4
  • Karczewski, J. 2014. Apoptosis of regulatory T cells in Crohn’s disease. Clin. Res. Hepatol. Gastroenterol. 38: e57–e59
  • Ishikawa, D., A. Okazawa, D. Corridoni, et al. 2013. Tregs are dysfunctional in vivo in a spontaneous murine model of Crohn’s disease. Mucosal. Immunol. 6: 267–275
  • Maul, J., C. Loddenkemper, P. Mundt, et al. 2005. Peripheral and intestinal regulatory CD4 + CD25high T cells in inflammatory bowel disease. Gastroenterology. 128: 1868–1878
  • Neurath, M. F., I. Fuss, B. L. Kelsall, et al. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182: 1281–1290
  • Liu, Z., K. Geboes, H. Heremans, et al. 2001. Role of interleukin-12 in the induction of mucosal inflammation and abrogation of regulatory T cell function in chronic experimental colitis. Eur. J. Immunol. 31: 1550–1560
  • Ford, A. C., W. J. Sandborn, K. J. Khan, et al. 2011. Efficacy of biological therapies in inflammatory bowel disease: systematic review and meta-analysis. Am. J. Gastroenterol. 106: 644–659
  • Waldenr, M. J., and M. F. Neurath. 2014. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semmin. Immunol. 26: 75–79
  • Naugler, W. E., and M. Karin. 2008. The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 14: 109–119
  • Neurath, M. F., and S. Finotto. 2011. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 22: 83–89
  • Hyams, J. S., J. E. Fitzgerald, W. R. Treem, et al. 1993. Relationship of functional and antigenic interleukin 6 to disease activity in inflammatory bowel disease. Gastroenterology. 103: 1285–1292
  • Mahida, Y. R., L. Kurlac, A. Gallagher, and C. J. Hawkey. 1991. High circulating concentrations of interleukin-6 in active Crohn’s disease but not ulcerative colitis. Gut. 32: 1531–1534
  • Abraham, C., and J. Cho. 2009. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm. Bowel Dis. 15: 1090–1100
  • Brand, S. 2009. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut. 58: 1152–1167
  • Jiang, S. 2011. Th17 Cells in Health and Disease. Springer Science + Business Media, LLC, New York, NY.
  • Karczewski, J., M. Mazur, and M. Karczewski. Dual role of Th17 cells in Crohn’s disease. Cent. Eur. J. Immunol 37: 286–289
  • Hueber, W., B. E. Sands, S. Lewitzky, et al. 2012. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 61: 1693–1700
  • Eastaff-Leung, N., N. Mabarrack, A. Barbour, et al. 2010. Foxp3 + regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J. Clin. Immunol. 30: 80–89
  • Noack, M., and P. Miossec. 2014. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 13: 668–677
  • Du Clos, T. W. 2000. Function of C-reactive protein. Ann. Med. 32: 274–278
  • Vermeire, S., G. Van Assche, and P. Rutgeerts. 2004. C-reactive protein as a marker for inflammatory bowel disease. Inflamm. Bowel Dis. 10: 661–665
  • Henriksen, M., J. Jahnsen, I. Lygren, et al. 2008. C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study. Gut. 57: 1518–1523
  • Bjerke, K., T. S. Halstensen, F. Jahnsen, et al. 1993. Distribution of macrophages and granulocytes expressing L1 protein (calprotectin) in human Peyer’s patches compared with normal ileal lamina propria and mesenteric lymph nodes. Gut. 34: 1357–1363
  • Konikoff, M. R., and L. A. Denson. 2006. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm. Bowel Dis. 12: 524–534
  • Kayazawa, M., O. Saitoh, K. Kojima, et al. 2002. Lactoferrin in whole gut lavage fluid as a marker for disease activity in inflammatory bowel disease: comparison with other neutrophil-derived proteins. Am. J. Gastroenterol. 97: 360–369
  • Best, W. R., J. M. Becktel, J. W. Singleton, and F. J. Kern. 1976. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gstroenterology. 1976: 439–444
  • Gasche, C., J. Scholmerich, J. Brynskov, et al. 2000. A simple classification of Crohn’s disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm. Bowel Dis. 6: 8–15
  • Mary, J. Y., and R. Modigliani. 1989. Development and validation of an endoscopic index of severity for Crohn’s disease: a prospective multicentre study. Gut. 30: 983–989
  • Sandborn, W. J., B. G. Feagan, S. B. Hanauer, et al. 2002. A review of activity indices and efficacy endpoints for clinical trials of medical therapy in adults with Crohn’s disease. Gastroneterology. 122: 512–530
  • Sipponen, T., E. Savilahti, K. L. Kolho, et al. 2008. Crohn’s disease activity assessed by fecal calprotectin and lactoferrin: correlation with Crohn’s disease activity index and endoscopic findings. Inflamm. Bowel Dis. 14: 40–46
  • Røseth, A. G., E. Aadland, and K. Grzyb. 2004. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 39: 1017–1020
  • D’Haens, G., M. Ferrante, S. Vermeire, et al. 2012. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm. Bowel Dis. 18: 2218–2224
  • Otten, C. M., L. Kok, B. J. Witteman, et al. 2008. Diagnostic performance of rapid tests for detection of fecal calprotectin and lactoferrin and their ability to discriminate inflammatory from irritable bowel syndrome. Clin. Chem. Lab. Med. 46: 1275–1280
  • Schoepfer, A. M., M. Trummler, P. Seeholzer, et al. 2008. Discriminating IBD from IBS: comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm. Bowel Dis. 14: 32–39
  • van Rheenen, P. F., E. Van de Vijver, and V. Fidler. 2010. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ. 341: c3369
  • Gisbert, J. P., A. G. McNicholl, and F. Gomollon. 2009. Questions and answers on the role of fecal lactoferrin as a biological marker in inflammatory bowel disease. Inflamm. Bowel Dis. 15: 1746–1754
  • Silberer, H., B. Küppers, O. Mickisch, et al. 2005. Fecal leukocyte proteins in inflammatory bowel disease and irritable bowel syndrome. Clin. Lab. 51: 117–126
  • Schröder, O., M. Naumann, Y. Shastri, et al. 2007. Prospective evaluation of faecal neutrophil-derived proteins in identifying intestinal inflammation: combination of parameters does not improve diagnostic accuracy of calprotectin. Aliment. Pharmacol. Ther. 26: 1035–1042
  • Ford, E. S., W. H. Giles, G. L. Myers, et al. 2003. C-reactive protein concentration distribution among US children and young adults: findings from the National Health and Nutrition Examination Survey, 1999–2000. Clin. Chem. Lab. Med. 49: 1353–1357
  • Tall, A. R. 2004. C-reactive protein reassessed. N. Engl. J. Med. 350: 1450–1452
  • Kiss, L. S., M. Papp, B. D. Lovasz, et al. 2012. High-sensitivity C-reactive protein for identification of disease phenotype, active disease, and clinical relapses in Crohn’s disease: a marker for patient classification? Inflamm. Bowel Dis. 18: 1647–1654
  • Fagan, E. A., R. F. Dyck, P. N. Maton, et al. 1982. Serum levels of C-reactive protein in Crohn’s disease and ulcerative colitis. Eur. J. Clin. Invest. 12: 351–359
  • Chamouard, P., Z. Richert, N. Meyer, et al. 2006. Diagnostic value of C-reactive protein for predicting activity level of Crohn’s disease. Clin. Gastroenterol. Hepatol. 4: 882–887
  • Colombel, J. F., W. J. Sandborn, W. Reinisch, et al. 2010. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 362: 1383–1395
  • Colombel, J. F., W. J. Sandborn, P. Rutgeerts, et al. 2007. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology. 132: 52–65
  • Schreiber, S., M. Khaliq-Kareemi, I. C. Lawrance, et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N. Engl. J. Med. 357: 239–250
  • Boirivant, M., M. Leoni, D. Tariciotti, et al. 1988. The clinical significance of serum C reactive protein levels in Crohn’s disease. Results of a prospective longitudinal study. J. Clin. Gastroenterol. 10: 401–405
  • Kirkham, B. W., A. Kavanaugh, and K. Reich. 2014. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology. 141: 133–142
  • Weaver, C. T., R. D. Hatton, P. R. Mangan, and L. E. Harrington. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25: 821–852
  • Zhu, S., and Y. Qian. 2012. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin. Sci. 122: 487–511
  • Langley, R. G., B. E. Elewski, M. Lebwohl, et al. 2014. Secukinumab in plaque psoriasis – results of two phase 3 trials. N. Engl. J. Med. 371: 326–338
  • McInnes, I. B., J. Sieper, J. Braun, et al. 2014. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann. Rheum. Dis. 73: 349–356
  • Baeten, D., X. Baraliakos, J. Braun, et al. 2013. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 382: 1705–1713
  • Genovese, M. C., P. Durez, H. B. Richards, et al. 2013. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann. Rheum. Dis. 72: 863–869
  • Holtta, V., P. Klemetti, T. Sipponen, et al. 2008. IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm. Bowel Dis. 14: 1175–1184
  • Yen, D., J. Cheung, H. Scheerens, et al. 2006. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116: 1310–1316
  • Elson, C. O., Y. Cong, C. T. Weaver, et al. 2007. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology. 132: 2359–2370
  • Mannon, P. J., I. J. Fuss, L. Mayer, et al. 2004. Anti-interleukin-12 antibody for active Crohn’s disease. N. Engl. J. Med. 351: 2069–2079
  • Sandborn, W. J., B. G. Feagan, R. N. Fedorak, et al. 2008. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 135: 1130–1141
  • O’Connor, W., M. Kamanaka, C. J. Booth, et al. 2009. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10: 603–609
  • Ogawa, A., A. Andoh, Y. Araki, et al. 2004. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110: 55–62
  • Sipponen T, E. Savilahti, P. Kärkkäinen, et al. 2008. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn’s disease. Inflamm. Bowel Dis. 14: 1392–1398
  • Hölttä, V., T. Sipponen, M. Westerholm-Ormio, et al. 2012. In Crohn’s disease, anti-TNF-α treatment changes the balance between mucosal IL-17, FOXP3, and CD4 Cells. ISNR Gastroenterol. 2012: 505432
  • Gisbert, J. P., F. Bermejo, J. L. Pérez-Calle, et al. 2009. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm. Bowel Dis. 15: 1190–1198

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.