151
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Measuring adriamycin-induced cardiac hemodynamic dysfunction with a proteomics approach

, , , , , , , , , , & show all
Pages 376-386 | Received 20 Jun 2009, Accepted 26 Oct 2009, Published online: 27 Jan 2010

References

  • Carter, S.K. Adriamycin—a review. J. Natl Cancer Inst. 1975, 55, 1265–1274.
  • Singal, P.K., Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 1998, 339, 900–905.
  • Singal, P.K., Deally, C.M., Weinberg, L.E. Subcellular effects of adriamycin in the heart: a concise review. J. Mol. Cell. Cardiol. 1987, 19, 817–828.
  • Palma, M., Mancuso, A., Grifalchi, F., Lugini, A., Pizzardi, N., Cortesi, E. Atrial fibrillation during adjuvant chemotherapy with docetaxel: a case report. Tumori. 2002, 88, 527–529.
  • Petit, T. Anthracycline-induced cardiotoxicity. Bull. du Cancer. 2004, 91 Suppl 3, 159–165.
  • Simsir, S.A., Lin, S.S., Blue, L.J., Gockerman, J.P., Russell, S.D., Milano, C.A. Left ventricular assist device as destination therapy in doxorubicin-induced cardiomyopathy. Ann. Thorac. Surg. 2005, 80, 717–719.
  • Outomuro, D., Grana, D.R., Azzato, F., Milei, J. Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int. J. Cardiol. 2007, 117, 6–15.
  • Lebrecht, D., Setzer, B., Ketelsen, U.P., Haberstroh, J., Walker, U.A. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003, 108, 2423–2429.
  • Beg, A.A., Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science (New York, NY). 1996, 274, 782–784.
  • Narayanan, P.K., Carter, W.O., Ganey, P.E., Roth, R.A., Voytik-Harbin, S.L., Robinson, J.P. Impairment of human neutrophil oxidative burst by polychlorinated biphenyls: inhibition of superoxide dismutase activity. J. Leukoc. Biol. 1998, 63, 216–224.
  • Chevallet, M., Luche, S., Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protoc. 2006, 1, 1852–1858.
  • Scheler, C., Lamer, S., Pan, Z., Li, X.P., Salnikow, J., Jungblut, P. Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis. 1998, 19, 918–927.
  • Hellman, U., Wernstedt, C., Góñez, J., Heldin, C.H. Improvement of an “In-Gel” digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 1995, 224, 451–455.
  • Nagami, K., Yoshikawa, T., Suzuki, M., Wainai, Y., Anzai, T., Handa, S. Abnormal beta-adrenergic transmembrane signaling in rabbits with adriamycin-induced cardiomyopathy. Jpn. Circ. J. 1997, 61, 249–255.
  • Papadopoulou, L.C., Theophilidis, G., Thomopoulos, G.N., Tsiftsoglou, A.S. Structural and functional impairment of mitochondria in adriamycin-induced cardiomyopathy in mice: suppression of cytochrome c oxidase II gene expression. Biochem. Pharmacol. 1999, 57, 481–489.
  • Tomlinson, C.W., Godin, D.V., Rabkin, S.W. Adriamycin cardiomyopathy: implications of cellular changes in a canine model with mild impairment of left ventricular function. Biochem. Pharmacol. 1985, 34, 4033–4041.
  • Lachnit, W.G., Phillips, M., Gayman, K.J., Pessah, I.N. Ryanodine and dihydropyridine binding patterns and ryanodine receptor mRNA levels in myopathic hamster heart. Am. J. Physiol. 1994, 267, H1205–H1213.
  • Woodcock, E.A., Arnolda, L., McGrath, B.P. Ventricular beta-adrenoceptors in adriamycin-induced cardiomyopathy in the rabbit. J. Mol. Cell. Cardiol. 1988, 20, 771–777.
  • Wallace, K.B. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol. Toxicol. 2003, 93, 105–115.
  • Deres, P., Halmosi, R., Toth, A., Kovacs, K., Palfi, A., Habon, T., Czopf, L., Kalai, T., Hideg, K., Sumegi, B., Toth, K. Prevention of doxorubicin-induced acute cardiotoxicity by an experimental antioxidant compound. J. Cardiovasc. Pharmacol. 2005, 45, 36–43.
  • Oliveira, P.J., Santos, M.S., Wallace, K.B. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Moscow). 2006, 71, 194–199.
  • Chen, Y., Daosukho, C., Opii, W.O., Turner, D.M., Pierce, W.M., Klein, J.B., Vore, M., Butterfield, D.A., St Clair, D.K. Redox proteomic identification of oxidized cardiac proteins in adriamycin-treated mice. Free Radic. Biol. Med. 2006, 41, 1470–1477.
  • Takemura, G., Fujiwara, H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 2007, 49, 330–352.
  • Uyeda, K. Phosphofructokinase. Adv. Enzymol. Relat. Areas Mol. Biol. 1979, 48, 193–244.
  • Pilkis, S.J., El-Maghrabi, M.R., McGrane, M.M., Pilkis, J., Claus, T.H. The role of fructose 2,6-bisphosphate in regulation of fructose-1,6-bisphosphatase. J. Biol. Chem. 1981, 256, 11489–11495.
  • Van Schaftingen, E., Hers, H.G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 2861–2863.
  • Tejwani, G.A. Regulation of fructose-bisphosphatase activity. Adv. Enzymol. Relat. Areas Mol. Biol. 1983, 54, 121–194.
  • Gidh-Jain, M., Zhang, Y., van Poelje, P.D., Liang, J.Y., Huang, S., Kim, J., Elliott, J.T., Erion, M.D., Pilkis, S.J., Raafat el-Maghrabi, M. The allosteric site of human liver fructose-1,6-bisphosphatase. Analysis of six AMP site mutants based on the crystal structure. J. Biol. Chem. 1994, 269, 27732–27738.
  • Tillmann, H., Eschrich, K. Isolation and characterization of an allelic cDNA for human muscle fructose-1,6-bisphosphatase. Gene. 1998, 212, 295–304.
  • Al-Robaiy, S., Eschrich, K. Rat muscle fructose-1,6-bisphosphatase: cloning of the cDNA, expression of the recombinant enzyme, and expression analysis in different tissues. Biol. Chem. 1999, 380, 1079–1085.
  • Stein, S., Liehr, T., Eschrich, K. Characterization of the mouse liver fructose-1,6-bisphosphatase gene. Gene. 2001, 264, 215–224.
  • Ryan, C., Radziuk, J. Distinguishable substrate pools for muscle glyconeogenesis in lactate-supplemented recovery from exercise. Am. J. Physiol. 1995, 269, E538–E550.
  • Gleeson, T.T. Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Annu. Rev. Physiol. 1996, 58, 565–581.
  • Zmojdzian, M., Dziewulska-Szwajkowska, D., Dzugaj, A. Localization of chicken muscle FBPase in cardiomyocyte nuclei. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 2005, 140, 37–43.
  • Meier-Ruge, W., Iwangoff, P., Reichlmeier, K. Neurochemical enzyme changes in Alzheimer’s and Pick’s disease. Arch. Gerontol. Geriatr. 1984, 3, 161–165.
  • Poon, H.F., Castegna, A., Farr, S.A., Thongboonkerd, V., Lynn, B.C., Banks, W.A., Morley, J.E., Klein, J.B., Butterfield, D.A. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience. 2004, 126, 915–926.
  • Pucar, D., Bast, P., Gumina, R.J., Lim, L., Drahl, C., Juranic, N., Macura, S., Janssen, E., Wieringa, B., Terzic, A., Dzeja, P.P. Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H776–H782.
  • Dzeja, P., Kalvenas, A., Toleikis, A., Praskevicius, A. The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase. Biochem. Int. 1985, 10, 259–265.
  • Dzeja, P.P., Zeleznikar, R.J., Goldberg, N.D. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol. Cell. Biochem. 1998, 184, 169–182.
  • Kubo, S., Noda, L.H. Adenylate kinase of porcine heart. Eur. J. Biochem. 1974, 48, 325–331.
  • Laterveer, F.D., Nicolay, K., Gellerich, F.N. Experimental evidence for dynamic compartmentation of ADP at the mitochondrial periphery: coupling of mitochondrial adenylate kinase and mitochondrial hexokinase with oxidative phosphorylation under conditions mimicking the intracellular colloid osmotic pressure. Mol. Cell. Biochem. 1997, 174, 43–51.
  • Zeleznikar, R.J., Heyman, R.A., Graeff, R.M., Walseth, T.F., Dawis, S.M., Butz, E.A., Goldberg, N.D. Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J. Biol. Chem. 1990, 265, 300–311.
  • Dzeja, P.P., Zeleznikar, R.J., Goldberg, N.D. Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J. Biol. Chem. 1996, 271, 12847–12851.
  • Dzeja, P.P., Vitkevicius, K.T., Redfield, M.M., Burnett, J.C., Terzic, A. Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ. Res. 1999, 84, 1137–1143.
  • Pucar, D., Janssen, E., Dzeja, P.P., Juranic, N., Macura, S., Wieringa, B., Terzic, A. Compromised energetics in the adenylate kinase AK1 gene knockout heart under metabolic stress. J. Biol. Chem. 2000, 275, 41424–41429.
  • Zeleznikar, R.J., Dzeja, P.P., Goldberg, N.D. Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J. Biol. Chem. 1995, 270, 7311–7319.
  • Dzeja, P.P., Terzic, A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J. 1998, 12, 523–529.
  • Olson, L.K., Schroeder, W., Robertson, R.P., Goldberg, N.D., Walseth, T.F. Suppression of adenylate kinase catalyzed phosphotransfer precedes and is associated with glucose-induced insulin secretion in intact HIT-T15 cells. J. Biol. Chem. 1996, 271, 16544–16552.
  • Pucar, D., Dzeja, P.P., Bast, P., Juranic, N., Macura, S., Terzic, A. Cellular energetics in the preconditioned state: protective role for phosphotransfer reactions captured by 18O-assisted 31P NMR. J. Biol. Chem. 2001, 276, 44812–44819.
  • Carrasco, A.J., Dzeja, P.P., Alekseev, A.E., Pucar, D., Zingman, L.V., Abraham, M.R., Hodgson, D., Bienengraeber, M., Puceat, M., Janssen, E., Wieringa, B., Terzic, A. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 7623–7628.
  • Saupe, K.W., Spindler, M., Tian, R., Ingwall, J.S. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ. Res. 1998, 82, 898–907.
  • Singal, P.K., Li, T., Kumar, D., Danelisen, I., Iliskovic, N. Adriamycin-induced heart failure: mechanism and modulation. Mol. Cell. Biochem. 2000, 207, 77–86.
  • Noda, Y., Okada, Y., Saito, N., Setou, M., Xu, Y., Zhang, Z., Hirokawa, N. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol. 2001, 155, 77–88.
  • Gonçalves, T.L., Benvegnú, D.M., Bonfanti, G., Frediani, A.V., Rocha, J.B. delta-Aminolevulinate dehydratase activity and oxidative stress during melphalan and cyclophosphamide-BCNU-etoposide (CBV) conditioning regimens in autologous bone marrow transplantation patients. Pharmacol. Res. 2009, 59, 279–284.
  • Liu, G., Voyno-Yasenetskaya, T.A. Radixin stimulates Rac1 and Ca2+/calmodulin-dependent kinase, CaMKII: cross-talk with Galpha13 signaling. J. Biol. Chem. 2005, 280, 39042–39049.
  • Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D.R., Ryan, M.T. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol. Cell. Biol. 2007, 27, 4228–4237.
  • Merkle, S., Pretsch, W. Characterization of triosephosphate isomerase mutants with reduced enzyme activity in Mus musculus. Genetics. 1989, 123, 837–844.
  • Asai, D.J., Koonce, M.P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 2001, 11, 196–202.
  • Nicholas, G., Thomas, M., Langley, B., Somers, W., Patel, K., Kemp, C.F., Sharma, M., Kambadur, R. Titin-cap associates with, and regulates secretion of, Myostatin. J. Cell. Physiol. 2002, 193, 120–131.
  • Nishimori, T., Tomonaga, T., Matsushita, K., Oh-Ishi, M., Kodera, Y., Maeda, T., Nomura, F., Matsubara, H., Shimada, H., Ochiai, T. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics. 2006, 6, 1011–1018.
  • Berberat, P.O., Katori, M., Kaczmarek, E., Anselmo, D., Lassman, C., Ke, B., Shen, X., Busuttil, R.W., Yamashita, K., Csizmadia, E., Tyagi, S., Otterbein, L.E., Brouard, S., Tobiasch, E., Bach, F.H., Kupiec-Weglinski, J.W., Soares, M.P. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 2003, 17, 1724–1726.
  • Sylvius, N., Tesson, F. Lamin A/C and cardiac diseases. Curr. Opin. Cardiol. 2006, 21, 159–165.
  • Hernandez, O.M., Housmans, P.R., Potter, J.D. Invited Review: pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation. J. Appl. Physiol. 2001, 90, 1125–1136.
  • Kirchberger, J., Bär, J., Schellenberger, W., Dihazi, H., Kopperschläger, G. 6-Phosphofructokinase from Pichia pastoris: purification, kinetic and molecular characterization of the enzyme. Yeast. 2002, 19, 933–947.
  • McDowell, T.L., Gibbons, R.J., Sutherland, H., O’Rourke, D.M., Bickmore, W.A., Pombo, A., Turley, H., Gatter, K., Picketts, D.J., Buckle, V.J., Chapman, L., Rhodes, D., Higgs, D.R. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13983–13988.
  • Park, D.J., Pask, A.J., Huynh, K., Renfree, M.B., Harley, V.R., Graves, J.A. Comparative analysis of ATRX, a chromatin remodeling protein. Gene. 2004, 339, 39–48.
  • Kondo, T., Takeuchi, K., Doi, Y., Yonemura, S., Nagata, S., Tsukita, S. ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J. Cell Biol. 1997, 139, 749–758.
  • Brière, J.J., Favier, J., El Ghouzzi, V., Djouadi, F., Bénit, P., Gimenez, A.P., Rustin, P. Succinate dehydrogenase deficiency in human. Cell. Mol. Life Sci. 2005, 62, 2317–2324.
  • Glushakova, L.G., Lisankie, M.J., Eruslanov, E.B., Ojano-Dirain, C., Zolotukhin, I., Liu, C., Srivastava, A., Stacpoole, P.W. AAV3-mediated transfer and expression of the pyruvate dehydrogenase E1 alpha subunit gene causes metabolic remodeling and apoptosis of human liver cancer cells. Mol. Genet. Metab. 2009, 98, 289–299.
  • Daikoku, T., Tranguch, S., Friedman, D.B., Das, S.K., Smith, D.F., Dey, S.K. Proteomic analysis identifies immunophilin FK506 binding protein 4 (FKBP52) as a downstream target of Hoxa10 in the periimplantation mouse uterus. Mol. Endocrinol. 2005, 19, 683–697.
  • Chen, H.J., Lin, C.M., Lin, C.S., Perez-Olle, R., Leung, C.L., Liem, R.K. The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev. 2006, 20, 1933–1945.
  • Kimura, Y., Sato, R., Mimura, K., Sato, M. Propionyl coenzyme A carboxylase is required for development of Myxococcus xanthus. J. Bacteriol. 1997, 179, 7098–7102.
  • Silva, C.H., Silva, M., Iulek, J., Thiemann, O.H. Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism. J. Biomol. Struct. Dyn. 2008, 25, 589–597.
  • Roche, T.E., Hiromasa, Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell. Mol. Life Sci. 2007, 64, 830–849.
  • Leyva, J.A., Bianchet, M.A., Amzel, L.M. Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review). Mol. Membr. Biol. 2003, 20, 27–33.
  • Tikhonov, A.N., Pogrebnaia, A.F., Romanovskii, I.u.M. [Electrostatic interactions in catalytic centers of F1-ATPase]. Biofizika. 2003, 48, 1052–1070.
  • Wang, L., Kumar, S., Fridley, B.L., Kalari, K.R., Moon, I., Pelleymounter, L.L., Hildebrandt, M.A., Batzler, A., Eckloff, B.W., Wieben, E.D., Greipp, P.R. Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clin. Cancer Res. 2008, 14, 3503–3513.
  • Luo, G., Herrera, A.H., Horowits, R. Molecular interactions of N-RAP, a nebulin-related protein of striated muscle myotendon junctions and intercalated disks. Biochemistry. 1999, 38, 6135–6143.
  • Nowak, K.J., Ravenscroft, G., Jackaman, C., Filipovska, A., Davies, S.M., Lim, E.M., Squire, S.E., Potter, A.C., Baker, E., Clément, S., Sewry, C.A., Fabian, V., Crawford, K., Lessard, J.L., Griffiths, L.M., Papadimitriou, J.M., Shen, Y., Morahan, G., Bakker, A.J., Davies, K.E., Laing, N.G. Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J. Cell Biol. 2009, 185, 903–915.
  • Chamovitz, D.A. Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Rep. 2009, 10, 352–358.
  • Lancellotti, S., Rutella, S., De Filippis, V., Pozzi, N., Rocca, B., De Cristofaro, R. Fibrinogen-elongated gamma chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. J. Biol. Chem. 2008, 283, 30193–30204.
  • King, S.M., Marchese-Ragona, S.P., Parker, S.K., Detrich, H.W., III., Inner and outer arm axonemal dyneins from the Antarctic rockcod Notothenia coriiceps. Biochemistry. 1997, 36, 1306–1314.
  • Nishio, R., Matsumori, A. Gelsolin and cardiac myocyte apoptosis: a new target in the treatment of postinfarction remodeling. Circ. Res. 2009, 104, 829–831.
  • Roseli Mieko Yamamoto Nomura, Fábio Roberto Cabar, Verbênia Nunes Costa, Seizo Miyadahira, Zugaib, M. Cardiac troponin T as a biochemical marker of cardiac dysfunction and ductus venosus Doppler velocimetry. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 147, 33–36.
  • Kepka, A., Szajda, S.D., Waszkiewicz, N., Zalewska, A., Pludowski, P., Zwierz-Gugala, D., Zalewska-Szajda, B., Borzym-Kluczyk, M., Kryskiewicz, E., Zwierz, K. Stabilizing the urinary activity of fructose-1,6-bisphosphatase with EDTA and mercaptoethanol. Clin. Biochem. 2009, 42, 1487–1489.
  • Witting, P.K., Liao, W.Q., Harris, M.J., Neuzil, J. Expression of human myoglobin in H9c2 cells enhances toxicity to added hydrogen peroxide. Biochem. Biophys. Res. Commun. 2006, 348, 485–493.
  • Blanco, S., Santos, C., Lazo, P.A. Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol. Cell. Biol. 2007, 27, 7273–7283.
  • Wang, X., Osinska, H., Gerdes, A.M., Robbins, J. Desmin filaments and cardiac disease: establishing causality. J. Card. Fail. 2002, 8, S287–S292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.