134
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Therapeutic approach by Aloe vera in experimental model of multiple sclerosis

, , , , , & show all
Pages 410-415 | Received 14 Sep 2009, Accepted 26 Oct 2009, Published online: 17 Mar 2010

References

  • Peiris, M., Monteith, G.R., Roberts-Thomson, S.J., Cabot, P.J. A model of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice for the characterisation of intervention therapies. J. Neurosci. Methods. 2007, 163, 245–254.
  • Furlan, R., Kurne, A., Bergami, A., Brambilla, E., Maucci, R., Gasparini, L., Butti, E., Comi, G., Ongini, E., Martino, G. A nitric oxide releasing derivative of flurbiprofen inhibits experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2004, 150, 10–19.
  • Zaheer, S., Wu, Y., Bassett, J., Yang, B., Zaheer, A. Glia maturation factor regulation of STAT expression: a novel mechanism in experimental autoimmune encephalomyelitis. Neurochem. Res. 2007, 32, 2123–2131.
  • Wang, Y., Kai, H., Chang, F., Shibata, K., Tahara-Hanaoka, S., Honda, S., Shibuya, A., Shibuya, K. A critical role of LFA-1 in the development of Th17 cells and induction of experimental autoimmune encephalomyelytis. Biochem. Biophys. Res. Commun. 2007, 353, 857–862.
  • Xiao, B.G., Ma, C.G., Xu, L.Y., Link, H., Lu, C.Z. IL-12/IFN-gamma/NO axis plays critical role in development of Th1-mediated experimental autoimmune encephalomyelitis. Mol. Immunol. 2008, 45, 1191–1196.
  • Jiang, H.R., Al Rasebi, Z., Mensah-Brown, E., Shahin, A., Xu, D., Goodyear, C.S., Fukada, S.Y., Liu, F.T., Liew, F.Y., Lukic, M.L. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J. Immunol. 2009, 182, 1167–1173.
  • Fisher, A.E., Maxwell, S.C., Naughton, D.P. Superoxide and hydrogen peroxide suppression by metal ions and their EDTA complexes. Biochem. Biophys. Res. Commun. 2004, 316, 48–51.
  • Klein, A.D., Penneys, N.S. Aloe vera. J.Am. Acad. Dermatol. 1988, 18, 714–720.
  • Grindlay, D., Reynolds, T. The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J. Ethnopharmacol. 1986, 16, 117–151.
  • Eamlamnam, K., Patumraj, S., Visedopas, N., Thong-Ngam, D. Effects of Aloe vera and sucralfate on gastric microcirculatory changes, cytokine levels and gastric ulcer healing in rats. World J. Gastroenterol. 2006, 12, 2034–2039.
  • Davis, R.H., Leitner, M.G., Russo, J.M., Byrne, M.E. Wound healing. Oral and topical activity of Aloe vera. J. Am. Podiatr. Med. Assoc. 1989, 79, 559–562.
  • Shelton, R.M. Aloe vera. Its chemical and therapeutic properties. Int. J. Dermatol. 1991, 30, 679–683.
  • Langmead, L., Chitnis, M., Rampton, D.S. Use of complementary therapies by patients with IBD may indicate psychosocial distress. Inflamm. Bowel Dis. 2002, 8, 174–179.
  • Sampedro, M.C., Artola, R.L., Murature, M., Murature, D., Ditamo, Y., Roth, G.A., Kivatinitz, S. Mannan from Aloe saponaria inhibits tumoral cell activation and proliferation. Int. Immunopharmacol. 2004, 4, 411–418.
  • Reynolds, T., Dweck, A.C. Aloe vera leaf gel: a review update. J. Ethnopharmacol. 1999, 68, 3–37.
  • Wooles, W.R., Diluzio, N.R. Reticuloendothelial function and the immune response. Science. 1963, 142, 1078–1080.
  • Rajasekaran, S., Sivagnanam, K., Subramanian, S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol. Rep. 2005, 57, 90–96.
  • Cory-Slechta, D.A., Weiss, B. Efficacy of the chelating agent CaEDTA in reversing lead-induced changes in behavior. Neurotoxicology. 1989, 10, 685–697.
  • Meldrum, J.B., Ko, K.W. Effects of calcium disodium EDTA and meso-2,3-dimercaptosuccinic acid on tissue concentrations of lead for use in treatment of calves with experimentally induced lead toxicosis. Am. J. Vet. Res. 2003, 64, 672–676.
  • Skundric, D.S., Zakarian, V., Dai, R., Lisak, R.P., Tse, H.Y., James, J. Distinct immune regulation of the response to H-2b restricted epitope of MOG causes relapsing-remitting EAE in H-2b/s mice. J. Neuroimmunol. 2003, 136, 34–45.
  • Natarajan, C., Muthian, G., Barak, Y., Evans, R.M., Bright, J.J. Peroxisome proliferator-activated receptor-gamma-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J. Immunol. 2003, 171, 5743–5750.
  • Phizackerley, P.J., Al-Dabbagh, S.A. The estimation of nitrate and nitrite in saliva and urine. Anal. Biochem. 1983, 131, 242–245.
  • Tuohy, V.K., Lu, Z., Sobel, R.A., Laursen, R.A., Lees, M.B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J. Immunol. 1989, 142, 1523–1527.
  • Mendel, I., Kerlero de Rosbo, N., Ben-Nun, A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol. 1995, 25, 1951–1959.
  • McRae, B.L., Kennedy, M.K., Tan, L.J., Dal Canto, M.C., Picha, K.S., Miller, S.D. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J. Neuroimmunol. 1992, 38, 229–240.
  • Beck, J., Rondot, P., Catinot, L., Falcoff, E., Kirchner, H., Wietzerbin, J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol. Scand. 1988, 78, 318–323.
  • Miller, A., al-Sabbagh, A., Santos, L.M., Das, M.P., Weiner, H.L. Epitopes of myelin basic protein that trigger TGF-beta release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J. Immunol. 1993, 151, 7307–7315.
  • Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A., Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994, 265, 1237–1240.
  • Racke, M.K., Bonomo, A., Scott, D.E., Cannella, B., Levine, A., Raine, C.S., Shevach, E.M., Röcken, M. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 1994, 180, 1961–1966.
  • Acar, G., Idiman, F., Idiman, E., Kirkali, G., Cakmakçi, H., Ozakbas, S. Nitric oxide as an activity marker in multiple sclerosis. J. Neurol. 2003, 250, 588–592.
  • Smith, K.J., Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet. Neurol. 2002, 1, 232–241.
  • Rand, M.J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin. Exp. Pharmacol. Physiol. 1992, 19, 147–169.
  • Toda, N., Tanaka, T., Ayajiki, K., Okamura, T. Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys. Neuroscience. 2000, 96, 393–398.
  • Redford, E.J., Kapoor, R., Smith, K.J. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain. 1997, 120 (Pt 12), 2149–2157.
  • Kapoor, R., Davies, M., Smith, K.J. Temporary axonal conduction block and axonal loss in inflammatory neurological disease. A potential role for nitric oxide? Ann. N. Y. Acad. Sci. 1999, 893, 304–308.
  • Garthwaite, G., Goodwin, D.A., Batchelor, A.M., Leeming, K., Garthwaite, J. Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience. 2002, 109, 145–155.
  • Allione, A., Bernabei, P., Bosticardo, M., Ariotti, S., Forni, G., Novelli, F. Nitric oxide suppresses human T lymphocyte proliferation through IFN-gamma-dependent and IFN-gamma-independent induction of apoptosis. J. Immunol. 1999, 163, 4182–4191.
  • Dietlin, T.A., Hofman, F.M., Gilmore, W., Stohlman, S.A., van der Veen, R.C. T cell expansion is regulated by activated Gr-1+ splenocytes. Cell. Immunol. 2005, 235, 39–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.