108
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Retention of immunogenicity produced by mucin1 peptides with glycosylation site substitutions

, , , &
Pages 647-655 | Received 13 Nov 2009, Accepted 02 Feb 2010, Published online: 17 May 2010

References

  • Greenberg, P.D., Riddell, S.R. Tumor-specific T-cell immunity: ready for prime time? J. Natl. Cancer Inst. 1992; 84: 1059–1061.
  • Rosenberg, S.A. Immunotherapy and gene therapy of cancer. Cancer Res. 1991; 51: 5074s–5079s.
  • Urban, J.L., Schreiber, H. Tumor antigens. Annu. Rev. Immunol. 1992; 10: 617–644.
  • Gendler, S.J. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia 2001; 6: 339–353.
  • Gendler, S., Taylor-Papadimitriou, J., Duhig, T., Rothbard, J., Burchell, J.A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J. Biol. Chem. 1988; 263: 12820–12823.
  • Lan, M.S., Batra, S.K., Qi, W.N., Metzgar, R.S., Hollingsworth, M.A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem. 1990; 265: 15294–15299.
  • Hanisch, F.G., Uhlenbruck, G., Peter-Katalinic, J., Egge, H., Dabrowski, J., Dabrowski, U.Structures of neutral O-linked polylactosaminoglycans on human skim milk mucins. A novel type of linearly extended poly-N-acetyllactosamine backbones with Gal beta(1-4)GlcNAc beta(1-6) repeating units. J. Biol. Chem. 1989; 264: 872–883.
  • Guevara-Patiño, J.A., Engelhorn, M.E., Turk, M.J., Liu, C., Duan, F., Rizzuto, G., Cohen, A.D., Merghoub, T., Wolchok, J.D., Houghton, A.N. Optimization of a self antigen for presentation of multiple epitopes in cancer immunity. J. Clin. Invest. 2006; 116: 1382–1390.
  • Burchell, J., Gendler, S., Taylor-Papadimitriou, J., Girling, A., Lewis, A., Millis, R., Lamport, D. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 1987; 47: 5476–5482.
  • Linsley, P.S., Brown, J.P., Magnani, J.L., Horn, D. Monoclonal antibodies reactive with mucin glycoproteins found in sera from breast cancer patients. Cancer Res. 1988; 48: 2138–2148.
  • Perey, L., Hayes, D.F., Maimonis, P., Abe, M., O′Hara, C., Kufe, D.W. Tumor selective reactivity of a monoclonal antibody prepared against a recombinant peptide derived from the DF3 human breast carcinoma-associated antigen. Cancer Res. 1992; 52: 2563–2568.
  • Nishimori, I., Johnson, N.R., Sanderson, S.D., Perini, F., Mountjoy, K., Cerny, R.L., Gross, M.L., Hollingsworth, M.A. Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. Studies with the MUC1 tandem repeat. J. Biol. Chem. 1994; 269: 16123–16130.
  • Barnd, D.L., Lan, M.S., Metzgar, R.S., Finn, O.J. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc. Natl. Acad. Sci. USA. 1989; 86: 7159–7163.
  • Ioannides, C.G., Fisk, B., Jerome, K.R., Irimura, T., Wharton, J.T., Finn, O.J.Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J. Immunol. 1993; 151: 3693–3703.
  • Jerome, K.R., Barnd, D.L., Bendt, K.M., Boyer, C.M., Taylor-Papadimitriou, J., McKenzie, I.F., Bast, R.C. Jr Finn, O.J. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 1991; 51: 2908–2916.
  • Orr, M.K., Burnside, J.S., Phillips, C.A., Philip, R., Dombrowski, K.E., Wright, S.E. MHC-restricted presentation of a single repeat of MUC1 mucin. Immunol. Invest. 2007; 36: 271–283.
  • Wright, S.E., Kilinski, L., Talib, S., Lowe, K.E., Burnside, J.S., Wu, J.Y., Dolby, N., Dombrowski, K.E., Lebkowski, J.S., Philip, R. Cytotoxic T lymphocytes from humans with adenocarcinomas stimulated by native MUC1 mucin and a mucin peptide mutated at a glycosylation site. J. Immunother. 2000; 23: 2–10.
  • Wright, S.E., Rewers-Felkins, K.A., Quinlin, I.S., Fogler, W.E., Phillips, C.A., Townsend, M., Robinson, W., Philip, R. MHC-unrestricted lysis of MUC1-expressing cells by human peripheral blood mononuclear cells. Immunol. Invest. 2008; 37: 215–225.
  • Sugiura, D., Aida, S., Denda-Nagai, K., Takeda, K., Kamata-Sakurai, M., Yagita, H., Irimura, T. Differential effector mechanisms induced by vaccination with MUC1 DNA in the rejection of colon carcinoma growth at orthotopic sites and metastases. Cancer Sci. 2008; 99: 2477–2484.
  • Rong, Y., Jin, D., Wu, W., Lou, W., Wang, D., Kuang, T., Ni, X., Qin, X. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine. BMC Cancer 2009; 9: 191.
  • Shi, F.F., Gunn, G.R., Snyder, L.A., Goletz, T.J. Intradermal vaccination of MUC1 transgenic mice with MUC1/IL-18 plasmid DNA suppresses experimental pulmonary metastases. Vaccine. 2007; 25: 3338–3346. Epub2007Jan22.
  • Tang, C.K., Sheng, K.C., Pouniotis, D., Esparon, S., Son, H.Y., Kim, C.W.; Pietersz, G.A., Apostolopoulos, V. Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine. 2008; 26: 3827–3834.
  • Westerlind, U., Hobel, A., Gaidzik, N., Schmitt, E., Kunz, H.Synthetic vaccines consisting of tumor-associated MUC1 glycopeptide antigens and a T-cell epitope for the induction of a highly specific humoral immune response. Angew. Chem. Int. Ed. Engl. 2008; 47: 7551–7556.
  • Watson, J.D., Hopkins, N.H., Roierts, J.W., Steitz, J.A., Weiner, J.D. Distinction between regular and irregular polymers. In Watson, J. D., Hopkins, N. H., Roierts, J. W., Steitz, J. A., Weiner, J. D., eds. Molecular Biology of the Gene, 4th ed. ( pp. 42–44). Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc, 1988.
  • Hopp, T.P., Woods, K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA. 1981; 78: 3824–3828.
  • Kyte, J., Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157: 105–132.
  • Ho, D.D., Kaplan, J.C., Rackauskas, I.E., Gurney, M.E. Second conserved domain of gp120 is important for HIV infectivity and antibody neutralization. Science 1988; 239: 1021–1023.
  • Wright, S.E., Khaznadar, R., Wang, Z., Quinlin, I.S., Rewers-Felkins, K.A., Phillips, C.A., Patel, S. Generation of MUC1-stimulated mononuclear cells using optimized conditions. Scand. J. Immunol. 2008; 67: 24–29.
  • Kornbluth, J., Flomenberg, N., Dupont, B. Cell surface phenotype of a cloned line of human natural killer cells. J. Immunol. 1982; 129: 2831–2837.
  • Roehm, N.W., Rodgers, G.H., Hatfield, S.M., Glasebrook, A.L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 1991; 142: 257–265.
  • Jost, L.M., Kirkwood, J.M., Whiteside, T.L. Improved short- and long-term XTT-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells. J. Immunol. Methods 1992; 147: 153–165.
  • Ahmed, S.A., Gogal, R.M. Jr, Walsh, J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods 1994; 170: 211–224.
  • Quinlin, I.S., Burnside, J.S., Dombrowski, K.E., Phillips, C.A., Dolby, N., Wright, S.E. Context of MUC1 epitope: immunogenicity. Oncol. Rep. 2007; 17: 453–456.
  • Wajchman, H.J., Pierce, C.W., Varma, V.A., Issa, M.M., Petros, J., Dombrowski, K.E. Ex vivo expansion of CD8+CD56+ and CD8+CD56- natural killer T cells specific for MUC1 mucin. Cancer Res. 2004; 64: 1171–1180.
  • Hernandez, J., Garcia-Pons, F., Lone, Y.C., Firat, H., Schmidt, J.D., Langlade-Demoyen, P., Zanetti, M. Identification of a human telomerase reverse transcriptase peptide of low affinity for HLA A2.1 that induces cytotoxic T lymphocytes and mediates lysis of tumor cells. Proc. Natl. Acad. Sci. USA. 2002; 99: 12275–12280.
  • Dionne, S.O., Myers, C.E., Smith, M.H., Lake, D.F. Her-2/ neu altered peptide ligand-induced CTL responses: implications for peptides with increased HLA affinity and T-cell-receptor interaction. Cancer Immunol. Immunother. 2004; 53: 307–314.
  • Pisarev, V.M., Kinarsky, L., Caffrey, T., Hanisch, F.G., Sanderson, S., Hollingsworth, M.A., Sherman, S. T cells recognize PD(N/T)R motif common in a variable number of tandem repeat and degenerate repeat sequences of MUC1. Int. Immunopharmacol. 2005; 5: 315–330.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.