92
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Increased oxidative stress condition found in different stages of HIV disease in patients undergoing antiretroviral therapy in Umuahia (Nigeria)

&
Pages 1060-1066 | Received 26 Jan 2012, Accepted 28 Mar 2012, Published online: 28 Apr 2012

References

  • Kellog, E.W., Fridovich, J. Liposome oxidation and erythrocytes lysis by enzymatically generated superoxide and hydrogen peroxide. J Biol Chem 1977, 252, 6721–6728.
  • Kellog, E.W., Fridovich, J. Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by xanthine oxidase system. J Biol Chem 1975, 250, 8812–8817.
  • Aruoma, O.I. Free radicals in tropical diseases. London: Harwood. Life Sciences 1993, 18:5–8.
  • Farmer, E.E., Davoine, C. Reactive electrophile species. Curr Opin Plant Biol 2007, 10, 380–386.
  • Del Rio, D., Stewart, A.J., Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005, 15, 316–328.
  • Moore, K., Roberts, L.J., 2nd. Measurement of lipid peroxidation. Free Radic Res 1998, 28, 659–671.
  • Wong, G.H., McHugh, T., Weber, R., Goeddel, D.V. Tumor necrosis factor α selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation. Proc Natl Acad Sci USA 1991, 88, 4372–4376.
  • Aukrust, P., Müller, F., Svardal, A.M., Ueland, T., Berge, R.K., Frøland, S.S. Disturbed glutathione metabolism and decreased antioxidant levels in human immunodeficiency virus-infected patients during highly active antiretroviral therapy–potential immunomodulatory effects of antioxidants. J Infect Dis 2003, 188, 232–238.
  • Hulgan, T., Morrow, J., Aguila, R., Raffanti, S., Morgan, M., Rebeiro, P. Oxidant stress is increased during treatment of human immunodeficiency virus infection. Clin Infect Dis 2003, 37, 1711–1717.
  • Westendorp, M.O., Shatrov, V.A., Schulze-Osthoff, K., Frank, R., Kraft, M., Los, M., Krammer, P.H., Dröge, W., Lehmann, V. HIV-1 Tat potentiates TNF-induced NF-κ B activation and cytotoxicity by altering the cellular redox state. EMBO J 1995, 14, 546–554.
  • Schreck, R., Rieber, P., Baeuerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κ B transcription factor and HIV-1. EMBO J 1991, 10, 2247–2258.
  • Das, U.N., Padma, M., Sagar, P.S., Ramesh, G., Koratkar, R. Stimulation of free radical generation in human leukocytes by various agents including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun 1990, 167, 1030–1036.
  • McCord, J.M. The superoxide free radical: its biochemistry and pathophysiology. Surgery 1983, 94, 412–414.
  • Freeman, B.A., Crapo, J.D. Biology of disease: free radicals and tissue injury. Lab Invest 1982, 47, 412–426.
  • Halliwell, B. Oxidants and human disease: some new concepts. FASEB J 1987, 1, 358–364.
  • Grabar, S., Le Moing, V., Goujard, C., Leport, C., Kazatchkine, M.D., Costagliola, D., Weiss, L. Clinical outcome of patients with HIV-1 infection according to immunologic and virologic response after 6 months of highly active antiretroviral therapy. Ann Intern Med 2000, 133, 401–410.
  • Cossarizza, A., Moyle, G. Antiretroviral nucleoside and nucleotide analogues and mitochondria. AIDS 2004, 18, 137–151.
  • de La Asunciόn, J., del Olmo, M.L., Sastre, J.A., Millán, A., Pellín, A., Pallardó, F. V., Viña, J. AZT treatment induces molecular and ultra structural oxidative damage to muscle mitochondria: prevention by antioxidant vitamins. J Cli Invest 1998, 102, 4–9.
  • Center for Disease Control and Prevention(CDC). Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR 1993, (RR-17), 1–19.
  • Wallin, B., Roseengren, B., Shetzer, H.G., Camego, G. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substance (TBARS) formation in a single micro plate: its use for evaluation of antioxidants. Ann Biochem 1993, 208, 10–15.
  • WHO. (2010). Priority interventions; HIV/AIDS prevention, treatment and care in the health sector (2010 version). WHO publications. pp. 1–174. Available at: http://www.who.int/hiv/pub/guidelines/9789241500234/en/index.html. Accessed on March, 2011.
  • Ibeh, B.O., Obidoa, O., Uzoegwu, P.N. High plasma activity of endogenous antioxidants protect CD4+ T-cells in HIV-serodiscordant heterosexual partners in a Nigerian population. Int J STD AIDS 2008, 19, 536–540.
  • Aquaro, S., Scopelliti, F., Pollicita, M., Perno, C.F. Oxidative stress and HIV infection: target pathways for novel therapies? Future HIV Therapy 2008, 2, 327–338. (DOI: 10.2217/17469600.2.4.327).
  • UNAIDS/WHO. (2007). Report on the Global AIDS Epidemic. Epidemic update. pp. 1–4. Available at: http://data.unaids.org/pub/epislides/2007/2007_epiupdate_en.pdf. Accessed on November, 2010.
  • Anafi, S.B., Muktarhm, D.F. Alawode, D.F. Commonly prescribed drugs in hiv/aids and patient’s socio-demographic data: a case study of University of Ilorin teaching hospital (UITH), Ilorin, Nigeria. Nigerian J Pharm Sci 2008, 7, 139–145.
  • Mojumdar, K., Vajpayee, M., Chauhan, N.K., Singh, A., Singh, R., Kurapati, S. Loss of CD127 & increased immunosenescence of T cell subsets in HIV infected individuals. Indian J Med Res 2011, 134, 972–981.
  • Skowron, G., Spritzler, J.G., Weidler, J., Robbins, G.K., Johnson, V.A., Chan, E.S., Asmuth, D.M., Gandhi, R.T., Lie, Y., Bates, M., Pollard, R.B.; NIH/NIAID ACTG 384 Protocol Team and Monogram Biosciences. Replication capacity in relation to immunologic and virologic outcomes in HIV-1-infected treatment-naive subjects. J Acquir Immune Defic Syndr 2009, 50, 250–258.
  • Gandhi, R.T., Spritzler, J., Chan, E., Asmuth, D.M., Rodriguez, B., Merigan, T.C., Hirsch, M.S., Shafer, R.W., Robbins, G.K., Pollard, R.B.; ACTG 384 Team. Effect of baseline- and treatment-related factors on immunologic recovery after initiation of antiretroviral therapy in HIV-1-positive subjects: results from ACTG 384. J Acquir Immune Defic Syndr 2006, 42, 426–434.
  • Knox, K.S., Vinton, C., Hage, C.A., Kohli, L.M., Twigg, H.L. 3rd., Klatt, N.R., Zwickl, B., Waltz, J., Goldman, M., Douek, D.C., Brenchley, J.M. Reconstitution of CD4 T cells in bronchoalveolar lavage fluid after initiation of highly active antiretroviral therapy. J Virol 2010, 84, 9010–9018.
  • Landay, A., da Silva, B.A., King, M.S., Albrecht, M., Benson, C., Eron, J., Glesby, M., Gulick, R., Hicks, C., Kessler, H., Murphy, R., Thompson, M., White, A.C. Jr., Wolfe, P., McMillan, F.I., Hanna, G.J. Evidence of ongoing immune reconstitution in subjects with sustained viral suppression following 6 years of lopinavir-ritonavir treatment. Clin Infect Dis 2007, 44, 749–754.
  • Guihot, A., Dentone C., Parizot, C., Tindel, M., Marcelin, A., Calvez, V., Costagliola, D., Katlama, C., Autran, B., Carcelain, G. CD4 nadir drives persistence of monocytes and T-lymphocytes activation in virologically suppressed HIV-infected patients. Boston, MA: 18th Conference on Retroviruses and Opportunistic Infections. February 27–March 2, 2011.
  • Aiuti, F., Mezzaroma, I. Failure to reconstitute CD4+ T-cells despite suppression of HIV replication under HAART. AIDS Rev 2006, 8, 88–97.
  • Audigé, A., Taffé, P., Rickenbach, M., Battegay, M., Vernazza, P., Nadal, D., Speck, R.F. Swiss HIV Cohort Study (SHCS). 210 Low Post-Seroconversion CD4 Count and Rapid Decrease of CD4 Density Identify HIV+ Fast Progressors. JAIDS 2011, 56, 90.
  • Panel on Antiretroviral Guidelines for Adults and Adolescents. (2011). Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. pp. 1–167. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed on March 2012.
  • Cao, W., Jamieson, B.D., Hultin, L.E., Hultin, P.M., Effros, R.B., Detels, R. Premature aging of T cells is associated with faster HIV-1 disease progression. J Acquir Immune Defic Syndr 2009, 50, 137–147.
  • Cocchi, F., DeVico, A.L., Garzino-Demo, A., Arya, S.K., Gallo, R.C., Lusso, P. Identification of RANTES, MIP-1 α, and MIP-1 β as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995, 270, 1811–1815.
  • Herbein, G., Varin, A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 2010, 7, 33.
  • Lachgar, A., Bernard, J., Bizzini, B., Astgen, A., Le Coq, H., Fouchard, M., Chams, V., Feldman, M., Burny, A., Zagury, J.F. Repair of the in vitro HIV-1-induced immunosuppression and blockade of the generation of functional suppressive CD8 cells by anti-α interferon and anti-Tat antibodies. Biomed Pharmacother 1996, 50, 13–18.
  • Molloy, M.J., Zhang, W., Usherwood, E.J. Suppressive CD8+ T cells arise in the absence of CD4 help and compromise control of persistent virus. J Immunol 2011, 186, 6218–6226.
  • Smith, D.E., Walker, B.D., Cooper, D.A., Rosenberg, E.S., Kaldor, J.M. Is antiretroviral treatment of primary HIV infection clinically justified on the basis of current evidence? AIDS 2004, 18, 709–718.
  • Ngondi, J.L., Oben, J., Forkah, D.M., Etame, L.H., Mbanya, D. The effect of different combination therapies on oxidative stress markers in HIV infected patients in Cameroon. AIDS Res Ther 2006, 3, 19.
  • Anthony, H., Kashou A.H., Agarwal A. Oxidants and Antioxidants in the Pathogenesis of HIV/AIDS. Open Reprod Sci J 2011, 3, 154–161.
  • DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents—A Working Group of the Office of AIDS Research Advisory Council (OARAC). (2008). Guidelines for the use of antiretroviral agents in HIV- 1-infected adults and adolescents. Department of Health and Human Services. Available at: http://aidsinfo.nih.gov/contentfiles/AdultandAdolescentGL.pdf. Accessed on 15 February 2011.
  • Blankson, J.N. Primary HIV-1 infection: to treat or not to treat? AIDS Read 2005, 15, 245–6, 249.
  • Kassutto, S., Maghsoudi, K., Johnston, M.N., Robbins, G.K., Burgett, N.C., Sax, P.E., Cohen, D., Pae, E., Davis, B., Zachary, K., Basgoz, N., D’agata, E.M., DeGruttola, V., Walker, B.D., Rosenberg, E.S. Longitudinal analysis of clinical markers following antiretroviral therapy initiated during acute or early HIV type 1 infection. Clin Infect Dis 2006, 42, 1024–1031.
  • Strain, M.C., Little, S.J., Daar, E.S., Havlir, D.V., Gunthard, H.F., Lam, R.Y., Daly, O.A., Nguyen, J., Ignacio, C.C., Spina, C.A., Richman, D.D., Wong, J.K. Effect of treatment, during primary infection, on establishment and clearance of cellular reservoirs of HIV-1. J Infect Dis 2005, 191, 1410–1418.
  • Abdool Karim, S.S., Naidoo, K., Grobler, A., Padayatchi, N., Baxter, C., Gray, A., Gengiah, T., Nair, G., Bamber, S., Singh, A., Khan, M., Pienaar, J., El-Sadr, W., Friedland, G., Abdool Karim, Q. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med 2010, 362, 697–706.
  • Wood, E., Hogg, R.S., Harrigan, P.R., Montaner, J.S. When to initiate antiretroviral therapy in HIV-1-infected adults: a review for clinicians and patients. Lancet Infect Dis 2005, 5, 407–414.
  • Jareño, E.J., Romá, J., Romero, B., Marín, N., Muriach, M., Johnsen, S., Bosch-Morell, F., Marselou, L., Romero, F.J. Serum malondialdehyde correlates with therapeutic efficiency of high activity antiretroviral therapies (HAART) in HIV-1 infected children. Free Radic Res 2002, 36, 341–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.