167
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative

, , , , &
Pages 1028-1038 | Received 27 Mar 2012, Accepted 11 May 2012, Published online: 20 Jun 2012

References

  • Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010, 140, 771–776.
  • Majno, G. The Healing Hand - Man and wound in the ancient world. Cambridge: MA: Harvard University Press; 1975.
  • Nathan C., Ding A. Nonresolving inflammation. Cell 2010, 140, 871–882.
  • Vane J.R., Botting R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med 1998, 104, 2S–8S; discussion 21S.
  • Burian M., Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005, 107, 139–154.
  • Morrow J.D., Roberts II L.J. Lipid-Derived Autacoids: Eicosanoids and Platelet-Activating Factor.. In: Brunton LL, Lazo JS, Parker KL. ed. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12e. New York: McGraw – Hill, 2010: 911–936.
  • Amann R., Peskar B.A. Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 2002, 447, 1–9.
  • Grilli M., Pizzi M., Memo M., Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 1996, 274, 1383–1385.
  • Frantz B., O’Neill E.A. The effect of sodium salicylate and aspirin on NF-kappa B. Science 1995, 270, 2017–2019.
  • Kopp E., Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994, 265, 956–959.
  • Pillinger M.H., Capodici C., Rosenthal P., Kheterpal N., Hanft S., Philips M.R., Weissmann G. Modes of action of aspirin-like drugs: salicylates inhibit erk activation and integrin-dependent neutrophil adhesion. Proc Natl Acad Sci USA 1998, 95, 14540–14545.
  • Wermuth C.G. Selective optimization of side activities: another way for drug discovery. J Med Chem 2004, 47, 1303–1314.
  • Passos C.S., Arbo M.D., Rates S.M.K., Poser G.L.V. Terpenoides com atividade sobre o Sistema Nervoso Central (SNC). Rev Bras Farmacogn 2009; 19:140–149.
  • Lewis, R.J. Synonym Cross-Index. Hazardous Chemicals Desk Reference: John Wiley & Sons, Inc.; 2008. p. 1487–1945.
  • Hattori A. [Camphor in the Edo era - camphor and borneol for medicines]. Yakushigaku Zasshi 2000, 35, 49–54.
  • Hattori A. [Historical study of a moth repellent, “Fujisawa Camphor” (2) manufacture of borneol]. Yakushigaku Zasshi 2001, 36, 108–112.
  • Stockman R. The Physiological Action of Borneol. A Contribution to the Pharmacology of the Camphor Group. J Physiol (Lond) 1888, 9, 65–91.
  • Liu R., Zhang L., Lan X., Li L., Zhang T.T., Sun J.H., Du G.H. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: involvement of anti-oxidation and anti-inflammation through nuclear transcription factor KappaB signaling pathway. Neuroscience 2011, 176, 408–419.
  • Chen X.H., Lin Z.Z., Liu A.M., Ye J.T., Luo Y., Luo Y.Y., Mao X.X., Liu P.Q., Pi R.B. The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice. J Pharm Pharmacol 2010, 62, 915–923.
  • Horváthová E., Slamenová D., Marsálková L., Sramková M., Wsólová L. Effects of borneol on the level of DNA damage induced in primary rat hepatocytes and testicular cells by hydrogen peroxide. Food Chem Toxicol 2009, 47, 1318–1323.
  • Silva-Filho J.C., Oliveira N.N., Arcanjo D.D., Quintans-Junior L.J., Cavalcanti S.C., Santos M.R., et al. Investigation of Mechanisms Involved in (-)-Borneol-Induced Vasorelaxant Response on Rat Thoracic Aorta. Basic Clin Pharmacol Toxicol. 2012:110:171–177.
  • Food and drugs analysis. Analyst 1914; 39(465).
  • Thomas M.R. Salicylic Acid and Related Compounds. [Online] In: Kirk-Othmer Encyclopedia of Chemical Technology: John Wiley & Sons, Inc.; 2006. Available at: http://dx.doi.org/10.1002/0471238961.1901120920081513.a01.pub2
  • Almeida R.N., Falcão A.C.G.M., Diniz R.S.T., Quintans-Júnior L.J., Polari R.M., Barbosa-Filho J.M., Agra M.F., Duarte J.C., Ferreira C.D., Antoniolli A.R., Araújo C.C. Metodologia para avaliação de plantas com atividade no sistema nervoso central e alguns dados experimentais. Rev Bras Farm 80, 1999:72–76.
  • de Vasconcelos D.I., Leite J.A., Carneiro L.T., Piuvezam M.R., de Lima M.R., de Morais L.C., Rumjanek V.M., Rodrigues-Mascarenhas S. Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediators Inflamm 2011, 2011, 912925.
  • Marinho M.G.V., Brito A.G., Carvalho K.A., Bezerra-Santos C.R., Andrade L.H.C., Barbosa-Filho J.M., et al. Amburana cearensis e cumarina imunomodulam os níveis de anticorpos antígeno-específico em camundongos BALB/c sensibilizados com ovalbumina. Lat Am J Pharm 2004; 23:5.
  • Doherty N.S., Poubelle P., Borgeat P., Beaver T.H., Westrich G.L., Schrader N.L. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2. Prostaglandins 1985, 30, 769–789.
  • Kolaczkowska E., Koziol A., Plytycz B., Arnold B. Inflammatory macrophages, and not only neutrophils, die by apoptosis during acute peritonitis. Immunobiology 2010, 215, 492–504.
  • Costa H.F., Bezerra-Santos C.R., Barbosa Filho J.M., Martins M.A., Piuvezam M.R. Warifteine, a bisbenzylisoquinoline alkaloid, decreases immediate allergic and thermal hyperalgesic reactions in sensitized animals. Int Immunopharmacol 2008, 8, 519–525.
  • Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982, 126, 131–138.
  • Tim M. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65:55–63.
  • Lai L.H., Chan F.K. Nonsteroid anti-inflammatory drug-induced gastroduodenal injury. Curr Opin Gastroenterol 2009, 25, 544–548.
  • Anderson G.D. Gender differences in pharmacological response. Int Rev Neurobiol 2008, 83, 1–10.
  • Winter C.A., Risley E.A., Nuss G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962, 111, 544–547.
  • Levy L. Carrageenan paw edema in the mouse. Life Sci 1969, 8, 601–606.
  • Vaz Z.R., Filho V.C., Yunes R.A., Calixto J.B. Antinociceptive action of 2-(4-bromobenzoyl)-3-methyl-4,6-dimethoxy benzofuran, a novel xanthoxyline derivative on chemical and thermal models of nociception in mice. J Pharmacol Exp Ther 1996, 278, 304–312.
  • Medeiros M.V., Binhara I.M., Moreno Júnior H., Zatz R., De Nucci G., Antunes E. Effect of chronic nitric oxide synthesis inhibition on the inflammatory responses induced by carrageenin in rats. Eur J Pharmacol 1995, 285, 109–114.
  • Handy R.L., Moore P.K. A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Br J Pharmacol 1998, 123, 1119–1126.
  • Damas J., Remacle-Volon G. Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 1992, 211, 81–86.
  • Posadas I., Bucci M., Roviezzo F., Rossi A., Parente L., Sautebin L., Cirino G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 2004, 142, 331–338.
  • Falcão E.P., de Melo S.J., Srivastava R.M., Catanho M.T., Do Nascimento S.C. Synthesis and antiinflammatory activity of 4-amino-2-aryl-5-cyano-6-{3- and 4-(N-phthalimidophenyl)} pyrimidines. Eur J Med Chem 2006, 41, 276–282.
  • Rinaldi S., Silva D.O., Bello F., Alviano C.S., Alviano D.S., Matheus M.E., Fernandes P.D. Characterization of the antinociceptive and anti-inflammatory activities from Cocos nucifera L. (Palmae). J Ethnopharmacol 2009, 122, 541–546.
  • Claudino R.F., Kassuya C.A., Ferreira J., Calixto J.B. Pharmacological and molecular characterization of the mechanisms involved in prostaglandin E2-induced mouse paw edema. J Pharmacol Exp Ther 2006, 318, 611–618.
  • Ushikubi F., Segi E., Sugimoto Y., Murata T., Matsuoka T., Kobayashi T., Hizaki H., Tuboi K., Katsuyama M., Ichikawa A., Tanaka T., Yoshida N., Narumiya S. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 1998, 395, 281–284.
  • DiPasquale G., Rassaert C., Richter R., Welaj P., Tripp L. Influence of prostaglandins (Pg) E2 and F2 on the inflammatory process. Prostaglandins 1973, 3, 741–757.
  • Maurer M., Bader M., Bas M., Bossi F., Cicardi M., Cugno M., Howarth P., Kaplan A., Kojda G., Leeb-Lundberg F., Lötvall J., Magerl M. New topics in bradykinin research. Allergy 2011, 66, 1397–1406.
  • Kaplan A.P., Joseph K., Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol 2002, 109, 195–209.
  • Campos M.M., Calixto J.B. Involvement of B1 and B2 receptors in bradykinin-induced rat paw oedema. Br J Pharmacol 1995, 114, 1005–1013.
  • Buritova J., Chapman V., Honoré P., Besson J.M. The contribution of peripheral bradykinin B2 receptors to carrageenan-evoked oedema and spinal c-Fos expression in rats. Eur J Pharmacol 1997, 320, 73–80.
  • Gardes J., Michineau S., Pizard A., Alhenc-Gelas F., Rajerison R.M. Aspirin inhibits human bradykinin B2 receptor ligand binding function. Biochem Pharmacol 2008, 75, 1807–1816.
  • Jutel M., Akdis M., Akdis C.A. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 2009, 39, 1786–1800.
  • Skidgel R.A., Erdös E.G.. Histamine, Bradykinin, and Their Antagonists.. In: Brunton LL, Lazo JS, Parker KL, ed. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12e. New York: McGraw – Hill, 2010:937–958.
  • Whittle B.A. The use of changes in capillary permeability in mice to distinguish between narcotic and nonnarcotic alalgesics. Br J Pharmacol Chemother 1964, 22, 246–253.
  • Deraedt R., Jouquey S., Delevallée F., Flahaut M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur J Pharmacol 1980, 61, 17–24.
  • Collier H.O., Dinneen L.C., Johnson C.A., Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 1968, 32, 295–310.
  • Leite D.F., Echevarria-Lima J., Ferreira S.C., Calixto J.B., Rumjanek V.M. ABCC transporter inhibition reduces zymosan-induced peritonitis. J Leukoc Biol 2007, 82, 630–637.
  • El Alwani M., Wu B.X., Obeid L.M., Hannun Y.A. Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther 2006, 112, 171–183.
  • Zheng Z., Li H., Zhang Z., Meng J., Mao D., Bai B., Lu B., Mao P., Hu Q., Wang H. Enterovirus 71 2C protein inhibits TNF-α-mediated activation of NF-κB by suppressing IκB kinase β phosphorylation. J Immunol 2011, 187, 2202–2212.
  • Sun S.C. Non-canonical NF-κB signaling pathway. Cell Res 2011, 21, 71–85.
  • Juhás S., Cikos S., Czikková S., Veselá J., Il’ková G., Hájek T., Domaracká K., Domaracký M., Bujnáková D., Rehák P., Koppel J. Effects of borneol and thymoquinone on TNBS-induced colitis in mice. Folia Biol (Praha) 2008, 54, 1–7.
  • Oswald I.P., Wynn T.A., Sher A., James S.L. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc Natl Acad Sci USA 1992, 89, 8676–8680.
  • Hackstein H., Morelli A.E., Larregina A.T., Ganster R.W., Papworth G.D., Logar A.J., Watkins S.C., Falo L.D., Thomson A.W. Aspirin inhibits in vitromaturation and in vivoimmunostimulatory function of murine myeloid dendritic cells. J Immunol 2001, 166, 7053–7062.
  • Bufan B., Mojsilovic S., Vucicevic D., Vucevic D., Vasilijic S., Balint B., Colic M. Comparative effects of aspirin and NO-releasing aspirins on differentiation, maturation and function of human monocyte-derived dendritic cells in vitro. Int Immunopharmacol 2009, 9, 910–917.
  • Bergman M., Djaldetti M., Salman H., Bessler H. Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 2011, 34, 22–28.
  • Lin C.F., Tsai C.C., Huang W.C., Wang C.Y., Tseng H.C., Wang Y., Kai J.I., Wang S.W., Cheng Y.L. IFN-gamma synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10. J Cell Biochem 2008, 105, 746–755.
  • Kröncke K.D., Fehsel K., Kolb-Bachofen V. Nitric oxide: cytotoxicity versus cytoprotection–how, why, when, and where? Nitric Oxide 1997, 1, 107–120.
  • Drapier J.C., Hibbs J.B. Jr. Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 1988, 140, 2829–2838.
  • Aller M.A., Arias J.L., Sánchez-Patán F., Arias J. The inflammatory response: an efficient way of life. Med Sci Monit 2006, 12, RA225–RA234.
  • Marcinkiewicz J., Grabowska A., Chain B. Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur J Immunol 1995, 25, 947–951.
  • Mollace V., Muscoli C., Masini E., Cuzzocrea S., Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005, 57, 217–252.
  • Hibbs J.B. Jr, Taintor R.R., Vavrin Z. Iron depletion: possible cause of tumor cell cytotoxicity induced by activated macrophages. Biochem Biophys Res Commun 1984, 123, 716–723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.