118
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Ex vivo immunomodulatory effect of all-trans-retinoic acid during Behçet’s disease: a study in Algerian patients

, , , , &
Pages 78-86 | Received 18 Sep 2013, Accepted 04 Dec 2013, Published online: 26 Dec 2013

References

  • Pineton de Chambrun M, Wechsler B, Geri G, et al. New insights into the pathogenesis of Behçet’s disease. Autoimmun Rev 2012;11:687–698
  • Amoura Z, Guillaume M, Caillat-Zucman S, et al. Pathophysiology of Behçet’s disease. La Revue de Médecine Interne 2006;27:843–853
  • Saadoun D, Wechsler B. Behçet’s disease. Orphanet J Rare Dis 2012;7:20–25
  • Djaballah-Ider F, Chaib S, Belguendouz H, et al. T cells activation and interferon-γ/nitric oxide production during Behçet disease: a study in Algerian patients. Ocul Immunol Inflamm 2012;20:215–217
  • Hamzaoui K, Hamzaoui A, Guemira F, et al. Cytokine profile in Behcet’s disease, relationship with disease activity. Scand J Rheumatol 2002;31:205–210
  • Ben Ahmed M, Houman H, Miled M, et al. Involvement of chemo-kines and Th1 cytokines in the pathogenesis of mucocutaneous lesions of Behcet’s disease. Arthritis Rheum 2004;50:2291–2295
  • Takeno M, Kariyone AI, Yamashita N, et al. Excessive functions of peripheral blood neutrophils from patients with Behçet's disease and from HLA B51 transgenic mice. Arthritis Rheum 1995;3:426–433
  • Forrester JV, Huitinga L, Dijkstra I, et al. Marrow derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 1998;17:426–437
  • Peranzoni E, Marigoa I, Dolcetti L, et al. Role of arginine metabolism in immunity and immunopathology. Immunobiology 2008;212:795–812
  • Nagy G, Clark JM, Buzas E, et al. Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett 2008;118:55–58
  • Djeraba Z, Arroul-Lammali A, Medjeber O, et al. Nitric oxide, biomarker of experimental autoimmune uveitis induced by S antigen. J Fr Ophtalmol 2010;33:693–700
  • Arroul-Lammali A, Djeraba Z, Belkhelfa M, et al. Early involvement of nitric oxide in mechanisms of pathogenesis of experimental autoimmune uveitis induced by interphotoreceptor retinoid-binding protein (IRBP). J Fr Ophtalmol 2012;35:251–259
  • Messaoudene D, Belguendouz H, Ahmedi ML, et al. Ex vivo effects of flavonoids extracted from Artemisia herba alba on cytokines and nitric oxide production in Algerian patients with Adamantiades-Behçet’s disease. J Inflam 2011;8:35–43
  • Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2:907–916
  • Lowenstein CJ, Alley EW, Raval P, et al. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA 1993;90:9730–9734
  • Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994;269:4705–4708
  • Taylor BS, de Vera ME, Ganster RW, et al. Multiple NF-κB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 1998;273:15148–15156
  • Kleinert H, Pautz A, Linker K, et al. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2004;500:255–266
  • Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys 2013;42:443–468
  • Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 2010;67:1423–1445
  • Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 2006;46:451–480
  • Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008;8:685–698
  • Samarut E, Rochette-Egly C. Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 2012;348:348–360
  • McGrane MM. Vitamin A regulation of gene expression: molecular mechanism of a prototype gene. J Nutr Biochem 2007;18:497–508
  • Ward A, Brogden RN, Heel RC, et al. Isotretinoin. A review of its pharmacological properties and therapeutic efficacy in acne and other skin disorders. Drugs 1984;28:6–37
  • Peck GL, Olsen TG, Butkus D, et al. Isotretinoin versus placebo in the treatment of cystic acne. A randomized double-blind study. J Am Acad Dermatol 1982;6:735–745
  • Ohnishi K. PML-RAR alpha inhibitors (ATRA, tamibaroten, arsenic troxide) for acute promyelocytic leukemia. Int J Clin Oncol 2007;12:313–317
  • Nozaki Y, Yamagata T, Sugiyama M, et al. Anti-inflammatory effect of all-trans retinoic acid in inflammatory arthritis. Clin Immunol 2006;119:272–279
  • Bai A, Lu N, Guo Y, et al. All-trans retinoic acid down-regulates inflammatory responses by shifting the Treg/Th17 profile in human ulcerative and murine colitis. J Leukoc Biol 2009;86:959–969
  • Keino H, Watanabe T, Sato Y, et al. Anti-inflammatory effect of retinoic acid on experimental autoimmune uveoretinitis. Br J Ophthalmol 2010;94:802–807
  • International Study Group for Behçet’s Disease. Criteria for the diagnosis of Behçet’s disease. Lancet 1990;335:1070–1080
  • Touil-Boukoffa C, Bauvois B, Sanceau J, et al. Production of nitric oxide (NO) in human hydatidosis. Relationship between nitrite and IFN-gamma levels. Biochimie 1998;80:739–744
  • Marshall SE. Behçet’s disease. Best Pract Res Clin Rheumatol 2004;18:291–311
  • Evereklioglu C, Turkoz Y, Er H, et al. Increased serum nitric oxide production in patients with Behçet’s disease: is it a new activity marker? J Am Acad Dermatol 2002;46:50–54
  • Yilmaz G, Sizmaz S, Yilmaz ED, et al. Aqueous humor nitric oxide levels in patients with Behçet disease. Retina 2002;22:330–335
  • Mäki-Petäjä KM, Cheriyan J, Booth AD, et al. Inducible nitric oxide synthase activity is increased in patients with rheumatoid arthritis and contributes to endothelial dysfunction. Int J Cardiol 2008;129:399–405
  • Hill KE, Zollinger LV, Watt HE, et al. Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J Neuroimmunol 2004;151:171–179
  • Belguendouz H, Messaoudene D, Hartani D, et al. Effet de la corticothérapie sur la production des interleukines 8, 12 et du monoxyde d’azote au cours des uvéites Behçet et idiopathique. J Fr Ophtalmol 2008;31:387–395
  • Kiraz S, Ertenli I, Calgüneri M, et al. Interactions of nitric oxide and superoxide dismutase in Behçet’s disease. Clin Exp Rheumatol 2001;19(Suppl 24):25–29
  • Sahin S, Lawrence R, Direskeneli H, et al. Monocyte activity in Behçet’s disease. Br J Rheumatol 1996;35:424–429
  • Raziuddin S, Al-Dalaan A, Bahabri S, et al. Divergent cytokine production profile in Behçet’s disease. Altered Th1/Th2 cell cytokine pattern. J Rheumatol 1998;25:329–333
  • Belguendouz H, Messaoudene D, Lahmar K, et al. Interferon-γ and nitric oxide production during Behçet uveitis: immunomodulatory effect of interleukin-10. J Interferon Cytokine Res 2011;31:643–651
  • Trinchieri G. Interleukin 12 and its role in the generation of TH1 cells. Immunol Today 1993;14:335–338
  • Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 1998;70:83–243
  • Nathan CF, Prendergast TJ, Wiebe ME, et al. Activation of human macrophages: comparison of other cytokines with interferon-γ. J Exp Med 1984;160:600–605
  • Wink DA, Hanbauer I, Grisham MB, et al. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 1996;34:159–187
  • Stamler JS. Redox signalling: nitrosylation and related target interactions of nitric oxide. Cell 1994;78:931–936
  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424–C1437
  • Peranzoni E, Marigo I, Dolcetti L, et al. Role of arginine metabolism in immunity and immunopathology. Immunobiology 2007;212:795–812
  • Orfanos CE, Bauer R. Evidence for anti-inflammatory activities of oral synthetic retinoids: experimental findings and clinical experience. Br J Dermatol 1983;109:55–60
  • Blomhoff HK, Smeland EB, Erikstein B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J Biol Chem 1992;25:23988–23992
  • Ertesvag A, Engedal N, Naderi S, et al. Retinoic acid stimulates the cell cycle machinery in normal T cells: involvement of retinoic acid receptor mediated IL-2 secretion. J Immunol 2002;169:5555–5563
  • Ertesvag A, Naderi S, Blomhoff HK. Regulation of B cell proliferation and differentiation by retinoic acid. Semin Immunol 2009;21:36–41
  • Ross AC, Chen Q, Ma Y. Augmentation of antibody responses by retinoic acid and costimulatory molecules. Semin Immunol 2009;21:42–50
  • Mucida D, Park Y, Kim G, et al. Reciprocal Th-17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317:256–260
  • Mehta K, McQueen T, Tucker S, et al. Inhibition by all-trans-retinoic acid of tumor necrosis factor and nitric oxide production by peritoneal macrophages. J Leukocyte Biol 1994;55:336–342
  • Motomura K, Isobe H, Sakai H, et al. Suppressive effects of all-trans-retinoic acid on the lipopolysaccharide-stimulated release of tumor necrosis factor-a and nitric oxide by rat Kupffer cells in vitro. Int Hepatol Commun 1996;5:177–183
  • Rafa H, Saoula H, Belkhelfa M, et al. IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid. J Interferon Cytokine Res 2013;33:355–368
  • Cho DH, Choi YJ, Jo SA, et al. Retinoic acid decreases nitric oxide production in endothelial cells: a role of phosphorylation of endothelial nitric oxide synthase at Ser1179. Biochem Biophys Res Commun 2005;326:703–710
  • Perrault LP, Malo O, Bidouard JP, et al. Inhibiting the NO pathway with intracoronary L-NAME infusion increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant 2003;22:439–451
  • Iwata M, Eshima Y, Kagechika H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol 2003;15:1017–1025
  • Wada Y, Hisamatsu T, Kamada N, et al. Retinoic acid contributes to the induction of IL-12-hypoproducing dendritic cells. Inflamm Bowel Dis 2009;15:1548–1556
  • Bidad K, Salehi E, Oraei M, et al. Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. Iran J Allergy Asthma Immunol 2011;10:243–249

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.