323
Views
10
CrossRef citations to date
0
Altmetric
Review Article

The potential role of iNKT cells in experimental allergic encephalitis and multiple sclerosis

, , , &
Pages 105-113 | Received 19 Mar 2013, Accepted 20 Feb 2014, Published online: 07 Mar 2014

References

  • Hagemeier K, Brück W, Kuhlmann T. Multiple sclerosis-remyelination failure as a cause of disease progression. Histol Histopathol 2012;27:277–287
  • Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. Lab Investig 2001;81:263–281
  • Frohman EM, Racke MK, Raine CS. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 2006;354:942–955
  • Mirshafiey A. Novel promising therapeutic agents in multiple sclerosis. Recent Patents Inflamm Allergy Drug Discov 2007;1:218–224
  • Bjartmar C, Wujek J, Trapp B. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 2003;206:165–171
  • Bø L, Vedeler CA, Nyland H, et al. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler 2003;9:323–331
  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005;128:2705–2712
  • Pulizzi A, Rovaris M, Judica E, et al. Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study. Arch Neurol 2007;64:1163–1168
  • Bailey-Bucktrout SL, Caulkins SC, Goings G, et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J Immunol 2008;180:6457–6461
  • Nicot AB. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci 2009;14:4477–4515
  • Mirshafiey A, Matsuo H, Nakane S, et al. Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol Immunotoxicol 2005;27:255–265
  • Evangelou N, Jackson M, Beeson D, Palace J. Association of the APOE ε4 allele with disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1999;67:203–205
  • Haines J, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nat Genet 1996;13:469–471
  • Myhr KM, Raknes G, Nyland H, Vedeler C. Immunoglobulin G Fc-receptor (FcγR) IIA and IIIB polymorphisms related to disability in MS. Neurology 1999;52:1771–1776
  • Sadovnick AD, Dyment D, Ebers GC. Genetic epidemiology of multiple sclerosis. Epidemiol Rev 1997;19:99–106
  • Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011;476:214–219
  • Theoharides TC, Konstantinidou AD. Corticotropin-releasing hormone and the blood-brain-barrier. Front Biosc 2007;12:1615–1628
  • Theoharides TC, Kempuraj D, Iliopoulou BP. Mast cells, T cells, and inhibition by luteolin: implications for the pathogenesis and treatment of multiple sclerosis. Immune Mediated Dis 2007;601:423–430
  • Stefferl A, Brehm U, Storch M, et al. Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” Brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response. J Immunol 1999;163:40–49
  • Bettelli E, Oukka M, Kuchroo VK. TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007;8:345–350
  • Thakker P, Leach MW, Kuang W, et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 2007;178:2589–2598
  • Neumann H, Medana IM, Bauer J, Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 2002;25:313–319
  • Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009;31:13–29
  • Hutter C. On the causes of multiple sclerosis. Med Hypotheses 1993;41:93–96
  • Berlanga-Taylor AJ, Ramagopalan SV. Vitamin D and multiple sclerosis: what is the clinical impact? Exp Opin Med Diagn 2013;7:227–229
  • Furlan R, Kurne A, Bergami A, et al. A nitric oxide releasing derivative of flurbiprofen inhibits experimental autoimmune encephalomyelitis. J Neuroimmunol 2004;150:10–19
  • Murphy ÁC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 2010;24:641–651
  • Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006;176:7768–7774
  • Vaknin-Dembinsky A, Murugaiyan G, Hafler DA, et al. Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis. J Neuroimmunol 2008;195:140–145
  • Hur EM, Youssef S, Haws ME, et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat Immunol 2006;8:74–83
  • Murugaiyan G, Mittal A, Weiner HL. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol 2008;181:7480–7488
  • Benveniste EN. Cytokines: influence on glial cell gene expression and function. Chem Immunol 1997;69:31–75
  • Yamamura T, Sakuishi K, Illés Z, Miyake S. Understanding the behavior of invariant NKT cells in autoimmune diseases. J Neuroimmunol 2007;191:8–15
  • Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413:531–534
  • Pál E, Tabira T, Kawano T, et al. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα14 NK T cells. J Immunol 2001;166:662–668
  • Simoni Y, Diana J, Ghazarian L, et al. Therapeutic manipulation of NKT cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013;171:8–19
  • Cohen NR, Brennan PJ, Shay T, et al. Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nat Immunol 2012;14:90–99
  • Mussai F, De Santo C, Cerundolo V. Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities. J Immunother 2012;35:449–459
  • Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005;3:e113
  • Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Investig Dermatol 2009;129:1628–1642
  • Mercer JC, Ragin MJ, August A. Natural killer T cells: rapid responders controlling immunity and disease. Int J Biochem Cell Biol 2005;37:1337–1343
  • Chuang YP, Wang CH, Wang NC, et al. Modulatory function of invariant natural killer T cells in systemic lupus erythematosus. Clin Dev Immunol 2012;2012:478429
  • Emoto M, Emoto Y. Intracellular bacterial infection and invariant NKT cells. Yonsei Med J 2009;50:12–21
  • Cohen NR, Garg S, Brenner MB. Antigen presentation by CD1: lipids, T cells, and NKT cells in microbial immunity. Adv Immunol 2009;102:1–94
  • Liu Y, Teige A, Mondoc E, et al. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice. J Clin Investig 2011;121:249–264
  • Barral P, Polzella P, Bruckbauer A, et al. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 2010;11:303–312
  • Lawson V. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells. Immunology 2012;137:20–27
  • Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L. CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 2008;20:358–368
  • Wu L, Gabriel C, Parekh V, Van Kaer L. Invariant natural killer T cells: innate-like T cells with potent immunomodulatory activities. Tissue Antigens 2009;73:535–545
  • Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol 2013;34:50–58
  • Brigl M, Tatituri RVV, Watts GFM, et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 2011;208:1163–1177
  • Parekh VV, Wilson MT, Van Kaer L. iNKT-cell responses to glycolipids. Crit Rev Immunol 2005;25:183–214
  • Gapin L. iNKT cell autoreactivity: what is ‘self’ and how is it recognized? Nat Rev Immunol 2010;10:272–277
  • Yu ED, Girardi E, Wang J, Zajonc DM. Cutting edge: structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J Immunol 2011;187:2079–2083
  • Matsuda JL, Naidenko OV, Gapin L, et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 2000;192:741–754
  • MacDonald HR. Development and selection of NKT cells. Curr Opin immunol 2002;14:250–254
  • Shimamura M, Ohteki T, Beutner U, Robson MacDonald H. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur J Immunol 2005;27:1576–1579
  • Das R, Sant’Angelo DB, Nichols KE. Transcriptional control of invariant NKT cell development. Immunol Rev 2010;238:195–215
  • Godfrey DI, Berzins SP. Control points in NKT-cell development. Nat Rev Immunol 2007;7:505–518
  • Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013;13:101–117
  • Seiler MP, Mathew R, Liszewski MK, et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol 2012;13:264–271
  • Mathew R, Seiler MP, Scanlon ST, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature 2012;491:618–621
  • Becker AM, Blevins JS, Tomson FL, et al. Invariant NKT cell development requires a full complement of functional CD3 ζ immunoreceptor tyrosine-based activation motifs. J Immunol 2010;184:6822–6832
  • Griewank K, Borowski C, Rietdijk S, et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 2007;27:751–762
  • Eberl G, Lowin-Kropf B, MacDonald HR. Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J Immunol 1999;163:4091–4094
  • Gadue P, Morton N, Stein PL. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J Exp Med 1999;190:1189–1196
  • Nichols KE, Hom J, Gong SY, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 2005;11:340–345
  • Pasquier B, Yin L, Fondanèche MC, et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med 2005;201:695–701
  • Kitamura H, Iwakabe K, Yahata T, et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999;189:1121–1128
  • Brigl M, Bry L, Kent SC, et al. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003;4:1230–1237
  • Watarai H, Sekine-Kondo E, Shigeura T, et al. Development and function of invariant natural killer T cells producing TH2-and TH17-cytokines. PLoS Biol 2012;10:e1001255
  • Kim HY, Pichavant M, Matangkasombut P, et al. The development of airway hyperreactivity in T-bet-deficient mice requires CD1d-restricted NKT cells. J Immunol 2009;182:3252–3261
  • Michel M-L, Keller AC, Paget C, et al. Identification of an IL-17-producing NK1. 1neg iNKT cell population involved in airway neutrophilia. J Exp Med 2007;204:995–1001
  • Coquet JM, Chakravarti S, Kyparissoudis K, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4− NK1. 1− NKT cell population. Proc Natl Acad Sci USA 2008;105:11287–11292
  • Hansen DS, Schofield L. Regulation of immunity and pathogenesis in infectious diseases by CD1d-restricted NKT cells. Int J Parasitol 2004;34:15–25
  • Nieuwenhuis EES, Matsumoto T, Exley M, et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat Med 2002;8:588–593
  • Kinjo Y, Tupin E, Wu D, et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 2006;7:978–986
  • Taniguchi M, Tashiro T, Dashtsoodol N, et al. The specialized iNKT cell system recognizes glycolipid antigens and bridges the innate and acquired immune systems with potential applications for cancer therapy. Int Immunol 2010;22:1–6
  • Toura I, Kawano T, Akutsu Y, et al. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J Immunol 1999;163:2387–2391
  • van der Vliet HJJ, Molling JW, von Blomberg BME, et al. The immunoregulatory role of CD1d-restricted natural killer T cells in disease. Clin Immunol 2004;112:8–23
  • Wilson SB, Delovitch TL. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 2003;3:211–222
  • Jahng AW, Maricic I, Pedersen B, et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 2001;194:1789–1799
  • Sharif S, Arreaza GA, Zucker P, et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 2001;7:1057–1062
  • Seino K, Fukao K, Muramoto K, et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci 2001;98:2577–2581
  • Ikehara Y, Yasunami Y, Kodama S, et al. CD4+ Valpha14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J Clin Investig 2000;105:1761–1768
  • Sonoda KH, Faunce DE, Taniguchi M, et al. NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol 2001;166:42–50
  • Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Investig 2004;114:1379–1403
  • Lee PT, Putnam A, Benlagha K, et al. Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Investig 2002;110:793–800
  • Hammond K, Godfrey D. NKT cells: potential targets for autoimmune disease therapy? Tissue Antigens 2002;59:353–363
  • Kukreja A, Cost G, Marker J, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Investig 2002;109:131–140
  • Kojo S, Adachi Y, Keino H, et al. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum 2001;44:1127–1138
  • Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 2011;53:263–270
  • Singh N, Hong S, Scherer DC, et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999;163:2373–2377
  • Burdin N, Brossay L, Kronenberg M. Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 1999;29:2014–2025
  • Yang J-Q, Singh AK, Wilson MT, et al. Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J Immunol 2003;171:2142–2153
  • Novak J, Beaudoin L, Griseri T, Lehuen A. Inhibition of T cell differentiation into effectors by NKT cells requires cell contacts. J Immunol 2005;174:1954–1961
  • Cain JA, Smith JA, Ondr JK, et al. NKT cells and IFN-γ establish the regulatory environment for the control of diabetogenic T cells in the nonobese diabetic mouse. J Immunol 2006;176:1645–1654
  • Walker KM, Rytelewski M, Mazzuca DM, et al. Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist. Immunol Cell Biol 2011;90:630–639
  • Chiba A, Kaieda S, Oki S, et al. The involvement of Vα14 natural killer T cells in the pathogenesis of arthritis in murine models. Arthritis Rheum 2005;52:1941–1948
  • Yang J-Q, Wen X, Kim PJ, Singh RR. Invariant NKT cells inhibit autoreactive B cells in a contact-and CD1d-dependent manner. J Immunol 2011;186:1512–1520
  • Araki M, Kondo T, Gumperz JE, et al. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 2003;15:279–288
  • Takahashi T, Nakamura K, Chiba S, et al. Vα24+ natural killer T cells are markedly decreased in atopic dermatitis patients. Hum Immunol 2003;64:586–592
  • Novak J, Beaudoin L, Park S, et al. Prevention of type 1 diabetes by invariant NKT cells is independent of peripheral CD1d expression. J Immunol 2007;178:1332–1340
  • Croxford JL, Miyake S, Huang Y-Y, et al. Invariant Vα19i T cells regulate autoimmune inflammation. Nat Immunol 2006;7:987–994
  • Cantorna MT, Zhao J, Yang L. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Proc Nutr Soc 2012;1:1–5
  • Mars LT, Laloux V, Goude K, et al. Cutting edge: Vα14-Jα281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol 2002;168:6007–6011
  • Wiethe C, Schiemann M, Busch D, et al. Interdependency of MHC class II/self-peptide and CD1d/self-glycolipid presentation by TNF-matured dendritic cells for protection from autoimmunity. J Immunol 2007;178:4908–4916
  • Mars LT, Gautron A-S, Novak J, et al. Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J Immunol 2008;181:2321–2329
  • Parekh VV, Singh AK, Wilson MT, et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J Immunol 2004;173:3693–3706
  • Karl O, Im JS, Molano A, et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc Natl Acad Sci USA 2005;102:3383–3388
  • O’Keeffe J, Gately CM, Counihan T, et al. T-cells expressing natural killer (NK) receptors are altered in multiple sclerosis and responses to α-galactosylceramide are impaired. J Neurol Sci 2008;275:22–28
  • Monteiro M, Almeida CF, Caridade M, et al. Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-β. J Immunol 2010;185:2157–2163
  • Behi ME, Dubucquoi S, Lefranc D, et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Lett 2005;96:11–26
  • Horikoshi M, Goto D, Segawa S, et al. Activation of invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis. PLoS One 2012;7:e51215
  • Yamamura T. Therapeutic strategy for multiple sclerosis targeting NK and NKT cells. Clin Neurol 2001;41:1162–1164
  • Sonoda KH, Taniguchi M, Stein-Streilein J. Long-term survival of corneal allografts is dependent on intact CD1d-reactive NKT cells. J Immunol 2002;168:2028–2034
  • Oh SJ, Chung DH. Invariant NKT cells producing IL-4 or IL-10, but not IFN-γ, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response. J Immunol 2011;186:6815–6821
  • Mars LT, Araujo L, Kerschen P, et al. Invariant NKT cells inhibit development of the Th17 lineage. Proc Natl Acad Sci USA 2009;106:6238–6343
  • Qian G, Qin X, Zang YQ, et al. High doses of α-galactosylceramide potentiate experimental autoimmune encephalomyelitis by directly enhancing Th17 response. Cell Res 2010;20:480–491
  • Jahng A, Maricic I, Aguilera C, et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 2004;199:947–957
  • Parekh VV, Wu L, Olivares-Villagómez D, et al. Activated invariant NKT cells control central nervous system autoimmunity in a mechanism that involves myeloid-derived suppressor cells. J Immunol 2013;190:1948–1960
  • Denney L, Kok WL, Cole SL, et al. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol 2012;189:551–557
  • Sakuishi K, Miyake S, Yamamura T. Role of NK cells and invariant NKT cells in multiple sclerosis. Molecular Basis of Multiple Sclerosis: Springer; 2010:127–147
  • Yamamura T. Involvement of NK and NKT cells in the pathogenesis of multiple sclerosis. Nihon Rinsho Jpn J Clin Med 2003;61:1329–1334
  • Kent SC, Chen Y, Clemmings SM, et al. Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J Immunol 2005;175:4458–4464
  • Démoulins T, Gachelin G, Bequet D, Dormont D. A biased Vα24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol Lett 2003;90:223–228
  • Illés Z, Kondo T, Newcombe J, et al. Differential expression of NK T cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 2000;164:4375–4381
  • Miyake S, Yamamura T. NKT cells and autoimmune diseases: unraveling the complexity. T cell activation by CD1 and lipid antigens. 2007;314:251–267
  • Moreira-Teixeira L, Resende M, Devergne O, et al. Rapamycin combined with TGF-β converts human invariant NKT Cells into suppressive Foxp3+ regulatory cells. J Immunol 2012;188:624–631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.