265
Views
25
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Allopurinol in Renal Ischemia

, , , , , , , & show all
Pages 304-316 | Received 10 Feb 2014, Accepted 26 Mar 2014, Published online: 10 Jun 2014

REFERENCES

  • Elion GB, Ide WS, Hitchings GH. The ultraviolet absorption spectra of thiouracils. J Am Chem Soc. 1946;68:2137–2140.
  • Hitchings GH, Elion GB, Falco EA, Studies on analogs of purines and pyrimidines. Ann N Y Acad Sci. 1950;52:1318–1335.
  • Elion GB, Callahan SW, Hitchings GH, Experimental clinical and metabolic studies of thiopurines. Cancer Chemother. 1962;16:197–202.
  • Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after discovery of allopurinol. Pharmacol Rev. 2006;58: 87–114.
  • Murrel GAC, Rapeport WG. Clinical pharmacokinetics of allopurinol. Clin Pharmacokinet. 1986;11:343–353.
  • Suzuki I, Yamauchi T, Onuma M, Allopurinol, an inhibitor of uric acid synthesis—can it be used for the treatment of metabolic syndrome and related disorders? Drugs Today. 2009;45:363–378.
  • Crowell JW, Jones CE, Smith EE. Effect of allopurinol on hemorrhagic shock. Am J Physiol. 1969;216:744–748.
  • De Wall RA, Vasko KA, Stanley EL, Responses of the ischemic myocardium to allopurinol. Am Heart J. 1971;82:362–370.
  • Vasko KA, DeWall RA, Riley AM. Effect of allopurinol in renal ischemia. Surgery. 1972;71:787–790.
  • Toledo-Pereyra LH, Najarian JS. Total recovery of ischemic kidneys treated with allopurinol before transplantation. Surg Forum. 1973;24:302–304.
  • Quebbemann AJ, Cumming JD, Shideman JR, Synthesis of uric acid in isolated normothermic perfused mongrel and Dalmatian dog kidneys. Am J Physiol. 1975;228(3):959–963.
  • Toledo-Pereyra LH, Simmons RL, Najarian JS. Protection of the ischemic liver by donor pretreatment before transplantation. Am J Surg. 1975;129(5):513–517.
  • Lindsay WG, Toledo-Pereyra LH, Foker JE, Metabolic myocardial protection with allopurinol during cardiopulmonary bypass and aortic cross-clamping. Surg Forum. 1975;26:259–260.
  • Cunningham SK, Keaveny TV, Fitzgerald P. Effect of allopurinol on tissue ATP, ADP, and AMP concentrations in renal ischaemia. Br J Surg. 1974;61(7):562–565.
  • Keel CE, Wang Z, Colli J, Protective effects of reducing renal ischemia-reperfusion injury during renal hilar clamping: use of allopurinol as a nephroprotective agent. Urology. 2013;81(1):210.e5–e10
  • Hansson R, Johansson S, Jonsson O. Kidney protection by pretreatment with free radical scavengers and allopurinol: renal function at recirculation after warm ischaemia in rabbits. Clin Sci. 1986;71(3):245–251.
  • Vaughan DL, Wickramasinghe YA, Russell GI, Is allopurinol beneficial in the prevention of renal ischaemia-reperfusion injury in the rat?: evaluation by near-infrared spectroscopy. Clin Sci. 1995;88:359–364.
  • Alatas O, Sahin A, Colak O, Beneficial effects of allopurinol on glutathione levels and glutathione peroxidase activity in rat ischaemic acute renal failure. J Int Med Res. 1996;24(1):33–39.
  • Gupta PC, Matsushita M, Oda K, Attenuation of renal ischemia-reperfusion injury in rats by allopurinol and prostaglandin E1. Eur Surg Res. 1998;30(2):102–107.
  • Marx A, Heberer M, Gale J, Reduction of renal reperfusion damage following warm ischemia by allopurinol and superoxide dismutase. Helv Chir Acta. 1989;56(4):539–542.
  • Radovic M, Miloradovic Z, Popovic T, Allopurinol and enalapril failed to conserve urinary NOx and sodium in ischemic acute renal failure in spontaneously hypertensive rats. Am J Nephrol. 2006;26(4):388–399.
  • Tripatara P, Patel NS, Webb A, Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol. 2007;18(2):570–580.
  • Sánchez-Lozada LG, Tapia E, Santamaría J, Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67(1):237–247.
  • Yelken B, Caliskan Y, Gorgulu N, Reduction of uric acid levels with allopurinol treatment improves endothelial function in patients with chronic kidney disease. Clin Nephrol. 2012;77(4):275–282.
  • Baker GL, Autor AP, Corry RJ. Effect of allopurinol on kidneys after ischemia and reperfusion. Curr Surg. 1985;42(6):466–469.
  • Owens ML, Lazarus HM, Wolcott MW, Allopurinol and hypoxanthine pretreatment of canine kidney donors. Transplantation. 1974;17:424–426.
  • Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Activation of mitochondrial apoptotic pathways in human renal allografts after ischemia-reperfusion injury. Transplantation. 2003;76, 50–54.
  • Devarajan, P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17:1503–1520.
  • Elion GB, Kovensky, Hitchings GH. Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochem Pharmacol. 1966;15:863–880.
  • Hernández-Baro C, Tamara JA, Toledo-Pereyra LH. Isquemia hepática. Conceptos básicos sobre su fisiopatología y tratamiento. Cirugía y cirujanos. 1990;57:241–249.
  • Nauta RJ, Tsimoyiannis E, Uribe M, Oxygen-derived free radicals in hepatic ischemia and reperfusion injury in the rat. Gynecol Obstet. 1990;171:120–125.
  • Schoenberg MH, Paes E. Intestinal ischemia and reperfusion. Prog Appl Microcirc. 1989;13:109–111.
  • Arnold PE, Lumlertgul D, Burke TJ, In vitro versus in vivo mitochondrial calcium loading in ischemic acute renal failure. Am J Physiol. 1985;248:F845.
  • Greene EL, Paller MS. Calcium and free radical in hypoxia/reoxygenation injury of renal epithelial cells. Am J Physiol Renal Physiol. 1994;266:F13–F20.
  • Godin DV, Bhimji S. Effects of allopurinol on myocardial ischemic injury induced by coronary artery ligation and reperfusion. Biochem Pharmacol. 1987;36:2101–2107.
  • Shapiro JI, Cheung C, Itabashi A, The effect of verapamil on renal function after warm and cold ischemia in the isolated perfused rat kidney. Transplantation. 1985;40:596.
  • Hertle L, Garthoff. Calcium channel blocker nisoldipine limits ischemic damage in rat kidney. J Urol. 1985;134:1251.
  • Kennedy SE, Erlich JH. Murine renal ischemia-reperfusion injury. Nephrology. 2008;13:390–396.
  • Gourdin MJ, Bree B, De Kock M. The impact of ischaemia–reperfusion on the blood vessel. Eur J Anaesthesiology. 2009;26, 537–547.
  • Zager RA, Johnson AC, Naito M, Maleate nephrotoxicity: mechanisms of injury and correlates with ischemic/hypoxic tubular cell death. Am J Physiol Renal Physiol. 2008;294(1):F187–F197.
  • Ratych RE, Bulkley GB, Williams GM. Ischemia/reperfusion injury in the kidney. Prog Clin Biol Res. 1986;224:263–289.
  • Hueteraux C, Lauritzen I, Widmann C, Essential role of adenosine, adenosine A1 receptors and ATP sensitive K+ channel in cerebral ischaemic preconditioning. Proc Natl Acad Sci USA. 1995;92:4666–4670.
  • Gibson T, Simmonds HA, Potter C, A controlled study of the effect of long term allopurinol treatment on renal function in gout. Adv Exp Med Biol. 1980;122A:257–262.
  • Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984;74:1156–1164.
  • Greene EL, Paller MS. Xanthine oxidase produces O2- in posthypoxic injury of renal epithelial cells. Am J Physiol. 1992;263:251–255.
  • Yun Y, Duan WG, Chen P, Ischaemic postconditioning modified renal oxidative stress and lipid peroxidation caused by ischaemic reperfusion injury in rats. Transplant Proceed. 2009;41:3597–3602.
  • Baker GL, Corry RJ, Autor AP, Oxygen free radicals induced damage in kidneys subjected to warm ischemia and reperfusion: protective effect of superoxide dismutase. Ann Surg. 1985;202:628–641.
  • Sameshima T, Miyao J, Oda T, Effects of allopurinol on renal damage following renal ischemia. Masui. 1995;44(3):349–356.
  • Namazi MR. Cetirizine and allopurinol as novel weapons against cellular autoimmune disorders. Int Immunopharmacol. 2004;4(3):349–353.
  • Thurman JM, Ljubanovic D, Royer PA, Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J Immunol. 2003;170:1517–1523.
  • Leemans JC, Stokman G, Claessen N, Renal-associated TLR-2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest. 2005;115:2894–903.
  • Wu H, Chen G, Wyburn KR, TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest. 2007;117:2847–2859.
  • Hoke TS, Douglas IS, Klein CL, Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol. 2007;18(1):155–164.
  • Thurman JM, Lenderink AM, Royer PA, C3a is required for the production of CXC chemokines by tubular epithelial cells after renal ischemia/reperfusion. J Immunol. 2007;178:1819–1828.
  • Kelly KJ, Williams WW, Jr, Colvin RB, Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996;97:1056–1063.
  • Lee S, Huen S, Nishio S, Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 2011;22:317–326.
  • Amura CR, Renner B, Lyubchenko T, Complement activation and toll-like receptor-2 signaling contribute to cytokine production after renal ischemia/reperfusion. Mol Inmmunol. 2012;52(3–4):249–257.
  • Ferrari R, Ceconi C, Curello S, Role of oxygen free radicals in ischemic and reperfused myocardium. Am J Clin Nutr. 1991;53:215S–222S.
  • Tirmenstein MA, Reed DJ. Characterization of glutathione-dependent inhibition of lipid peroxidation of isolated rat liver nuclei. Archs Biochem Biophys. 1988;266:1–11.
  • Domanska-Janik K, Bourre JM. Effect of lipid peroxidation on Na+,K+-ATPase, 5’-nucleotidase and CNPase in mouse brain myelin. Biochim Biophys Acta. 1990;1034:200–206.
  • Aricioglu A, Aydin S, Turkozkan N. The effect of allopurinol on Na+K+ATPase related lipid peroxidation in ischemic and reperfused rabbit kidney. Gen Pharmacol. 1994;25(2):341–344.
  • Goligorsky MS. “Whispers and shouts in the pathogenesis of acute renal ischaemia”. Nephrol Dial Transplant. 2005;20:261–266.
  • Hu QH, Zhang X, Pan Y, Allopurinol, quercetin and routine ameliorate renal NLRP3 inflammasome activation and lipic accumulation in fructose-fed rats. Biochem Pharmacol. 2012;84(1):113–125.
  • Strieter RM, Kunkel SL, Bone RC. Role of tumor necrosis factor-α in disease states and inflammation. Crit Care Med. 1993;21:S447–S463.
  • Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65.
  • Perry BC, Soltys D, Toledo AH, Tumor necrosis factor-α in liver ischemia/reperfusion injury. J Invest Surg. 2011;24:178–188.
  • Corda S, Laplace C, Vicault E, Rapid reactive oxygen species production by mitochondrial in endothelial cells exposed to tumor necrosis factor-α is mediated by ceramide. Am J Respir Cell Mol Biol. 2001;24(6):762–768.
  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.
  • Naismith JH, Sprang SR. Modularity in the TNF-receptor family. Trends Biochem Sci. 1998;23:74–79.
  • Banner DW, D'Arcy A, Janes W, Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell. 1993;73:431–445.
  • Chan FK, Chun HJ, Zheng L A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000;288:2351–2354.
  • Grell M, Douni E, Wajant H The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995;83:793–802.
  • Sun HY, Wang NP, Halkos M, Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis. 2006;11:1583–1593.
  • Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81:495–504.
  • Zhang J, Cado D, Chen A, Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature. 1998;392: 296–300.
  • Juo P, Woo MS, Kuo CJ, FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 1999;10:797–804.
  • Rőth E, Hejjel L, Jaberansari MT, The role of free radicals in endogenous adaptation and intracellular signals. Exp Clin Cardiol. 2004;9:13–16.
  • Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Hepatology. 2007;97:738–774.
  • Hensley K, Robinson KA, Gabbita SP, Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28:1456–1462.
  • Rachmat FD, Rachmat J, Sastroasmoro S, Effect of allopurinol on oxidative stress and hypoxic adaptation response during surgical correction of tetralogy of fallot. Acta Med Indones. 2013;45(2):94–100.
  • Kin H, Wang NP, Mykytenko J, Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF-α release. Shock. 2008;29:761–768.
  • Jefayri MK, Grace PA, Mathie RT. Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide. Ireland BJU International. 2000;85:1007–1013.
  • Rodrígez-Reynoso S, Leal C, Portilla E, Effect of exogenous melatonin on hepatic energetic status during ischemia/reperfusion: possible role of tumor necrosis factor-α and nitric oxide. J Surg Research. 2001;100:141–149.
  • Liu P, Xu B, Spokas E, Role of endogenous nitric oxide in TNF-α and IL-1β generation in hepatic ischemia/reperfusion. Shock. 2000;13:217–223.
  • Legrand M, Almac E, Mik EG, L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol. 2009;296:F1109–F1117.
  • Zhang C, Hein TW, Wang W, Activation of JNK and xanthine oxidase by TNF-alpha impairs nitric oxide-mediated dilation of coronary arterioles. J Mol Cell Cardiol. 2006;40(2):247–257.
  • Myers SI, Wang L, Liu F, Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. J Vasc Surg. 2006;43:577–586.
  • Netea MG, Kullberg BJ, Block WL, The role of hyperuricemia in the increased cytokine production after lipopolysaccharide in neutropenic mice. Blood. 1997;89:577–582.
  • Chaplin DD, Fu Y. Cytokine regulation of secondary lymphoid organ development. Curr Opin Immunol. 1998;10:289–297.
  • Taylor PC, Peters AM, Paleolog E, Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum. 2000;43:38–47.
  • Teoh NC, Farrel GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol. 2003;18:891–902.
  • Suzuki S, Toledo-Pereyra LH. Interleukin 1 and tumor necrosis factor production as the initial stimulants of liver ischemia and reperfusion injury. J Surg Res. 1994;57:253–258.
  • Ilhan H, Alatas O, Tokar B. Effects of the anti-ICAM-1 monoclonal antibody, allopurinol, and methylene blue on intestinal reperfusion injury. J Pediatr Surg.2003;38:1591–1595.
  • Hatano E. Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol. 2007;22(Suppl. 1):S43–S44.
  • Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell. 2002;9:401–410.
  • Yamaoka S, Courtois G, Bessia C. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell. 1998;93:1231–1240.
  • Rothwarf DM, Zandi E, Natoli G, IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature. 1998;395:297–300.
  • Harhaj EW, Good L, Xiao G, Somatic mutagenesis studies of NF-kappa B signaling in human T cells: evidence for an essential role of IKK gamma in NF-kappa B activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene. 2000;19:1448–1456.
  • Mercurio F, Murray BW, Shevchenko A, IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol. 1999;19:1526–1538.
  • Deckert-Schluter M, Bluethmann H, Rang A, (1998) Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol. 1998;160:3427–3436.
  • White LE, Santora RJ, Cui Y, TNFR-1-dependent pulmonary apoptosis during ischemic acute kidney injury. Am J Physiol Lung Cell Mol Physiol. 2012;303:L449–L459.
  • Mercurio F, Zhu H, Murray BW, IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 1999;278:860–866.
  • DiDonato JA, Hayakawa M, Rothwarf DM, A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997;388:548–554.
  • Zandi E, Rothwarf DM, Delhase M, The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;91:243–252.
  • Hasson R, Gustafsson O, Jonsson S, Effect of xanthine oxidase inhibition on renal circulation after ischemia. Transpl P. 1982;14:51–58.
  • Zwemer CF, Shoemaker JL, Jr, Hazard SW, III, Hyperoxic reperfusion exacerbates postischemic renal dysfunction. Surgery. 2000;128(5):815–821.
  • Rhoden E, Teloken C, Lucas M, Protective effect of allopurinol in the renal ischemia–reperfusion in uninephrectomized rats. Gen Pharmacol. 2000;35(4):189–193.
  • Willgoss DA, Zhang B, Gobé GC, Repetitive brief ischemia: intermittent reperfusion during ischemia ameliorates the extent of injury in the perfused kidney. Ren Fail. 2003;25(3):379–395.
  • Peto K, Oláh VA, Bráth E, Determination of urinary NAG to detect renal ischemia-reperfusion injury and the protective effect of allopurinol. Magy Seb. 2005;58(2):134–137.
  • Bartels-Stringer M, Verpalen JT, Wetzels JF, Iron chelation or anti-oxidants prevent renal cell damage in the rewarming phase after normoxic, but not hypoxic cold incubation. Cryobiology. 2007;54(3):258–264.
  • Peto K, Nemeth N, Brath E, The effects of renal ischemia-reperfusion on hemorheological factors: preventive role of allopurinol. Clin Hemorheol Microcirc. 2007;37(4):347–358.
  • Monedero P, García-Fernández N, Pérez-Valdivieso JR, Acute kidney injury. Rev Esp Anestesiol Reanim. 2011;58(6):365–374,
  • Wang Z, Colli JL, Keel C, Isoprostane: quantitation of renal ischemia and reperfusion injury after renal artery clamping in an animal model. J Endourol. 2012;26(1):21–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.