993
Views
46
CrossRef citations to date
0
Altmetric
Articles

An evolving web of signaling networks regulated by Cripto-1

, , , , &
Pages 13-21 | Received 30 Sep 2011, Accepted 15 Nov 2011, Published online: 12 Dec 2011

References

  • Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafari M, Cheung AE, Orozco O, Olson D, De Luca A, Chen LL, Miatkowski K, Benjamin C, Normanno N, Williams KP, Jarpe M, LePage D, Salomon D, Sanicola M. 2003. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest. 112:575–587.
  • Andersson O, Bertolino P, Ibanez CF. 2007. Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev Biol. 311:500–511.
  • Bianco C, Salomon DS. 2010. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin Ther Pat. 20:1739–1749.
  • Bianco C, Kannan S, De Santis M, Seno M, Tang CK, Martinez-Lacaci I, Kim N, Wallace-Jones B, Lippman ME, Ebert AD, Wechselberger C, Salomon DS. 1999. Cripto-1 indirectly stimulates the tyrosine phosphorylation of erb B-4 through a novel receptor. J Biol Chem. 274:8624–8629.
  • Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, Sun Y, Khan N, Kenney N, Ebert A, Williams KP, Sanicola M, Salomon DS. 2002. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial cells. Mol Cell Biol. 22:2586–2597.
  • Bianco C, Strizzi L, Rehman A, Normanno N, Wechselberger C, Sun Y, Khan N, Hirota M, Adkins H, Williams K, Margolis RU, Sanicola M, Salomon DS. 2003. A Nodal- and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Cancer Res. 63:1192–1197.
  • Bianco C, Strizzi L, Mancino M, Watanabe K, Gonzales M, Hamada S, Raafat A, Sahlah L, Chang C, Sotgia F, Normanno N, Lisanti M, Salomon DS. 2008. Regulation of Cripto-1 signaling and biological activity by caveolin-1 in mammary epithelial cells. Am J Pathol. 172:345–357.
  • Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, Gonzales M, Salomon DS. 2010. Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol. 177:532–540.
  • Bikkavilli RK, Malbon CC. 2009. Mitogen-activated protein kinases and Wnt/beta-catenin signaling: Molecular conversations among signaling pathways. Commun Integr Biol. 2:46–49.
  • Blanchet MH, Le Good JA, Mesnard D, Oorschot V, Baflast S, Minchiotti G, Klumperman J, Constam DB. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J. 2008a; 27:2580–2591.
  • Blanchet MH, Le Good JA, Oorschot V, Baflast S, Minchiotti G, Klumperman J, Constam DB. Cripto localizes Nodal at the limiting membrane of early endosomes. Sci Signal. 2008b; 1:ra13.
  • Calvanese L, Marasco D, Doti L, Saporito A, D'Auria G, Paolillo L, Ruvo M, Falcigno L. 2010. Structural investigation on the Nodal-Cripto binding: A theoretical and experimental approach. Biopolymers. 93:1011–1021.
  • Carpene C, Dray C, Attane C, Valet P, Portillo MP, Churruca I, Milagro FI, Castan-Laurell I. 2007. Expanding role for the apelin/APJ system in physiopathology. J Physiol Biochem. 63:359–373.
  • Chen C, Shen MM. 2004. Two modes by which Lefty proteins inhibit nodal signaling. Curr Biol. 14:618–624.
  • Chen C, Ware SM, Sato A, Houston-Hawkins DE, Habas R, Matzuk MM, Shen MM, Brown CW. 2006. The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development. 133:319–329.
  • Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF. 2003. EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev. 17:31–36.
  • Chu J, Shen MM. 2010. Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Dev Biol. 342:63–73.
  • Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG. 1989. Molecular characterization of a gene of the ‘EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J. 8:1987–1991.
  • Cocciadiferro L, Miceli V, Kang KS, Polito LM, Trosko JE, Carruba G. 2009. Profiling cancer stem cells in androgen-responsive and refractory human prostate tumor cell lines. Ann NY Acad Sci. 1155:257–262.
  • Constam DB. 2009. Riding shotgun: A dual role for the epidermal growth factor-Cripto/FRL-1/Cryptic protein Cripto in Nodal trafficking. Traffic. 10:783–791.
  • D'Andrea D, Liguori GL, Le Good JA, Lonardo E, Andersson O, Constam DB, Persico MG, Minchiotti G. 2008. Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction. J Cell Biol. 180:597–605.
  • D'Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, Liguori GL, Autiero M, Carmeliet P, Minchiotti G. 2009. G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res. 105:231–238.
  • de Castro NP, Rangel MC, Nagaoka T, Salomon DS, Bianco C. 2010. Cripto-1: An embryonic gene that promotes tumorigenesis. Future Oncol. 6:1127–1142.
  • Ding JX, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM. 1998. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature. 395:702–707.
  • Gray PC, Harrison CA, Vale W. 2003. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci USA. 100:5193–5198.
  • Gray PC, Shani G, Aung K, Kelber J, Vale W. 2006. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol. 26:9268–9278.
  • Hamada S, Watanabe K, Hirota M, Bianco C, Strizzi L, Mancino M, Gonzales M, Salomon DS. 2007. Beta-catenin/TCF/LEF regulate expression of the short form human Cripto-1. Biochem Biophys Res Commun. 355:240–244.
  • Harms PW, Chang C. 2003. Tomoregulin-1 (TMEFF1) inhibits nodal signaling through direct binding to the nodal coreceptor Cripto. Genes Dev. 17:2624–2629.
  • Harrison H, Farnie G, Brennan KR, Clarke RB. 2010. Breast cancer stem cells: Something out of notching?. Cancer Res. 70:8973–8976.
  • Hirota M, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, Nagaoka T, Gonzales M, Seno M, Bianco C, Salomon DS. 2008. Smad2 functions as a co-activator of canonical Wnt/beta-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cell Signal. 20:1632–1641.
  • Hnasko R, Lisanti MP. 2003. The biology of caveolae: Lessons from caveolin knockout mice and implications for human disease. Mol Interv. 3:445–464.
  • Hu T, Li C. 2010. Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer. 9:236.
  • Kelber JA, Shani G, Booker EC, Vale WW, Gray PC. 2008. Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J Biol Chem. 283:4490–4500.
  • Kelber JA, Panopoulos AD, Shani G, Booker EC, Belmonte JC, Vale WW, Gray PC. 2009. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene. 28:2324–2336.
  • Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, Saijoh Y, O'Brien TP, Hamada H, Gridley T. 2003. Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev. 17:1207–1212.
  • Liguori GL, Borges AC, D'Andrea D, Liguoro A, Goncalves L, Salgueiro AM, Persico MG, Belo JA. 2008. Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo. Dev Biol. 15:280–289.
  • Meno C, Ito Y, Saijoh Y, Matsuda Y, Tashiro K, Kuhara S, Hamada H. 1997. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: Their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cells. 2:513–524.
  • Miharada K, Karlsson G, Rehn M, Rorby E, Siva K, Cammenga J, Karlsson S. 2011. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface GRP78. Cell Stem Cell. 9:330–344.
  • Minchiotti G, Manco G, Parisi S, Lago CT, Rosa F, Persico MG. 2001. Structure-function analysis of the EGF-CFC family member Cripto identifies residues essential for nodal signalling. Development. 128:4501–4510.
  • Morkel M, Huelsken J, Wakamiya M, Ding J, van de Wetering M, Clevers H, Taketo MM, Behringer RR, Shen MM, Birchmeier W. 2003. Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development. 130:6283–6294.
  • Ni M, Zhang Y, Lee AS. 2011. Beyond the endoplasmic reticulum: Atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J. 434:181–188.
  • Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, ten Berge D, Kalani Y. 2008. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol. 73:59–66.
  • Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. 2007. Targeting Nodal in malignant melanoma cells. Expert Opin Ther Targets. 11:497–505.
  • Qiao M, Sheng S, Pardee AB. 2008. Metastasis and AKT activation. Cell Cycle. 7:2991–2996.
  • Quest AF, Leyton L, Parraga M. 2004. Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease. Biochem Cell Biol. 82:129–144.
  • Raya A, Kawakami Y, Rodriguez-Esteban C, Buscher D, Koth CM, Itoh T, Morita M, Raya RM, Dubova I, Bessa JG, de la Pompa JL, Izpisua Belmonte JC. 2003. Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev. 17:1213–1218.
  • Reissmann E, Jornvall H, Blokzijl A, Andersson O, Chang C, Minchiotti G, Persico MG, Ibanez CF, Brivanlou AH. 2001. The orphan receptor ALK7 and the activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev. 15:2010–2022.
  • Reya T, Clevers H. 2005. Wnt signalling in stem cells and cancer. Nature. 434:843–850.
  • Sato M, Yao VJ, Arap W, Pasqualini R. 2010. GRP78 signaling hub: A receptor for targeted tumor therapy. Adv Genet. 69:97–114.
  • Schier AF. 2003. Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol. 19:589–621.
  • Shani G, Fischer WH, Justice NJ, Kelber JA, Vale W, Gray PC. 2008. GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol. 28:666–677.
  • Srinivasan R, Gillett CE, Barnes DM, Gullick WJ. 2000. Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res. 60:1483–1487.
  • Strizzi L, Abbott DE, Salomon DS, Hendrix MJ. 2008. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma. Cell Cycle. 7:1931–1935.
  • Tanegashima K, Haramoto Y, Yokota C, Takahashi S, Asashima M. 2004. Xantivin suppresses the activity of EGF-CFC genes to regulate nodal signaling. Int J Dev Biol. 48:275–283.
  • Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman J. 2005. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell. 120:857–871.
  • Uchida T, Wada K, Akamatsu T, Yonezawa M, Noguchi H, Mizoguchi A, Kasuga M, Sakamoto C. 1999. A novel epidermal growth factor-like molecule containing two follistatin modules stimulates tyrosine phosphorylation of erbB-4 in MKN28 gastric cancer cells. Biochem Biophys Res Commun. 266:593–602.
  • Wang Z, Li Y, Banerjee S, Sarkar FH. 2009. Emerging role of Notch in stem cells and cancer. Cancer Lett. 279:8–12.
  • Watanabe K, Bianco C, Strizzi L, Hamada S, Mancino M, Bailly V, Mo W, Wen D, Miatkowski K, Gonzales M, Sanicola M, Seno M, Salomon DS. Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration. J Biol Chem. 2007a; 282:31643–31655.
  • Watanabe K, Hamada S, Bianco C, Mancino M, Nagaoka T, Gonzales M, Bailly V, Strizzi L, Salomon DS. Requirement of glycosylphosphatidylinositol anchor of cripto-1 for ‘trans’ activity as a nodal co-receptor. J Biol Chem. 2007b; 289:35772–35786.
  • Watanabe K, Nagaoka T, Lee JM, Bianco C, Gonzales M, Castro NP, Rangel MC, Sakamoto K, Sun Y, Callahan R, Salomon DS. 2009. Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. J Cell Biol. 187:343–353.
  • Watanabe K, Meyer MJ, Strizzi L, Lee JM, Gonzales M, Bianco C, Nagaoka T, Farid SS, Margaryan N, Hendrix MJ, Vonderhaar BK, Salomon DS. 2010. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells. Stem Cells. 28:1303–1314.
  • Williams TM, Lisanti MP. 2005. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol. 288:C494–C506.
  • Xu C, Liguori G, Persico MG, Adamson ED. Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes. Development. 1999a; 126:483–494.
  • Xu CH, Liguori G, Persico MG, Adamson ED. Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes. Development. 1999b; 126:483–494.
  • Yan YT, Liu JJ, Luo Y, E C, Haltiwanger RS, Abate-Shen C, Shen MM. 2002. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol. 22:4439–4449.
  • Yeo C, Whitman M. 2001. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell. 7:949–957.
  • Yin L, Velazquez OC, Liu ZJ. 2010. Notch signaling: Emerging molecular targets for cancer therapy. Biochem Pharmacol. 80:690–701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.