10
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Basic Fibroblast Growth Factor is Synthesized and Released by Isolated Ovine Fetal Growth Plate Chondrocytes: Potential Role as an Autocrine Mitogen

, , , &
Pages 277-294 | Received 08 Aug 1991, Accepted 05 Nov 1991, Published online: 11 Jul 2009

References

  • Abraham J. A., Mergia A., Whang J. L., Tumulo A., Friedman J., Hjerrild K. A., Gospodarowicz D., Fiddes J. C. Nucleotide sequence of a bovine clone encoding the angiogenic protein, fibroblast growth factor. Science 1986; 233: 545–548
  • Azizkhan J. C., Klagsbrun M. Chondrocytes contain a growth factor that is localized in the nucleus and is associated with chromatin. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2762–2766
  • Baird A., Bohlen P. Fibroblast growth factors. Peptide Growth Factors and Their Receptors, M. B. Sporn, A. B. Roberts. Springer‐Verlag, Berlin 1990; 369–418
  • Baird A., Ling N. Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implication for a role of heparinase‐like enzymes in the neovascular response. Biochem. Biophys. Res. Commun. 1987; 142: 428–435
  • Baird A., Schubert D., Ling N., Guillemin R. Receptor and heparin‐binding domains of basic fibroblast growth factor. Proc. Natl. Acad. Sci. U.S.A. 1988; 88: 2324–2328
  • Baldin V., Roman A. ‐M., Bosc‐Bierne I., Amalric F., Bouche G. Translocation of bFGF to the nucleus is G1 phase cell cycle specific in bovine aortic endothelial cells. EMBO J. 1990; 9: 1511–1517
  • Bashkin P., Doctrow S., Klagsbrun M., Suahn C. M., Folkman J., Vlodavsky I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin‐like molecules. Biochemistry 1989; 28: 1737–1743
  • Bekoff M. C., Klagsbrun M. Characterization of growth factors in human cartilage. J. Cell. Biochem. 1982; 20: 237–245
  • Bugler B., Amalric F., Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol. Cell. Biol. 1991; 11: 573–577
  • Campo R. D., Tourtellotte C. D. The composition of bovine cartilage and bone. Biochem. Biophys. Acta. 1967; 141: 614–624
  • Crabb I. D., O'Keefe R. J., Puzas J. E., Rosier R. N. Synergistic effect of transforming growth factor β and fibroblast growth factor on DNA synthesis in chick growth plate chondrocytes. J. Bone Mineral Res. 1990; 5: 1105–1112
  • Cuevas P., Burgos J., Baird A. Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem. Biophys. Res. Commun. 1988; 156: 611–618
  • Flaumenhaft R., Moscatelli D., Saksela O., Rifkin D. Role of extracellular matrix in the action of basic fibroblast growth factor: Matrix as a source of growth factor for long‐term stimulation of plasminogen activator production and DNA synthesis. J. Cell. Physiol 1989; 140: 75–81
  • Flaumenhaft R., Moscatelli D., Rifkin B. Heparin and heparan sulphate increase the radius of diffusion and action of basic fibroblast growth factor. J. Cell. Biol. 1990; 111: 1651–1659
  • Folkman J., Klagsbrun M., Sasse J., Wadzinski M., Ingber D., Vlodavsky I. A heparin‐binding angiogenic protein—fibroblast growth factor—is stored within basement membrane. Am J. Pathol. 1988; 130: 393–400
  • Froger‐Gaillard B., Charrier A. M., Thenet S., Ronet X., Adolphe M. Growth‐promoting effects of acidic and basic fibroblast growth factor on rabbit articular chondrocytes aging in culture. Exp. Cell. Res. 1989; 183: 388–398
  • Gajdusek C. M., Carbon S. Injury‐induced release of basic fibroblast growth factor from bovine aortic endothelium. J. Cell Physiol. 1989; 139: 570–579
  • Gonzalez A. ‐M., Buscaglia M., Ong M., Baird A. Distribution of basic fibroblast growth factor in 18‐day rat fetus: Localization in the basement membranes of diverse tissues. J. Cell. Biol. 1990; 110: 753–765
  • Gospodarowicz D. Fibroblast growth factor. Chemical structure and biologic function. Clin. Orthopaed. Rel Res. 1989; 257: 231–248
  • Gospodarowicz D., Tauber J. P. Growth factors and extracellular matrix. Endocr. Rev. 1980; 1: 201–213
  • Gospodarowicz D., Gonzalez R., Fujii D. K. Are factors originating from serum, plasma or cultured cells involved in the growth promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells. J. Cell. Physiol. 1983; 114: 191–202
  • Gospodarowicz D., Massoglia S., Chene J., Fujii D. K. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J. Cell. Physiol. 1986; 127: 121–136
  • Greenwood F. C., Hunter W. M., Glover J. S. The preparation of 131I‐labelled human growth hormone of high specific radioactivity. Biochem. J. 1963; 89: 114–121
  • Hebert J. M., Basilico C., Goldfarb M., Haub O., Martin G. R. Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression during embryogenesis. Devel. Biol. 1990; 138: 454–463
  • Hill D. J. Relative abundance and molecular size of immunoreactive insulin‐like growth factors I and II in human fetal tissues. Early Hum. Develop. 1990; 21: 49–58
  • Hill D. J., De Sousa D. Insulin is a mitogen for isolated epiphyseal growth plate chondrocytes from the fetal lamb. Emdocrinology 1990; 126: 2661–2670
  • Hill D. J., Hogg J. Growth factors and the regulation of pre‐ and postnatal growth. Clinical Endocrinology and Metabolism, Perinatal Endocrinology, C. T. Jones. Bailliere Tindall, London 1989; Vol. 3: 579–625, No. 3
  • Hill D. J., Camacho‐Hubner C., Rashid P., Strain A. J., Clemmons D. R. Insulin‐like growth factor (IGF) binding protein release by human fetal fibroblasts: Dependency on cell density and IGF peptides. J. Endocrinol. 1989; 122: 87–98
  • Horton W. E., Higginbotham J. D., Chandrasekhar S. Transforming growth factor‐beta and fibroblast growth factor act synergistically to inhibit collagen II synthesis through a mechanism involving regulatory DNA sequences. J. Cell. Physiol. 1989; 141: 8–15
  • Hsu S. M., Raine L., Fanger H. Use of avidin‐biotin peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabelled antibody (PAP) procedures. J. Histochem. Cytochem. 1981; 29: 577–580
  • Inoue H., Kato Y., Iwamoto M., Hiraki Y., Sakuda M., Suzuki F. Stimulation of cartilage‐matrix proteoglycan synthesis by morphologically transformed chondrocytes grown in the presence of fibroblast growth factor and transforming growth factor β. J. Cell. Physiol. 1989; 138: 329–337
  • Jakowlew S. B., Dillard P. J., Kondaiah P., Sporn M. B., Roberts A. B. Complementary deoxyribonucleic acid cloning of a novel transforming growth factor‐β messenger ribonucleic acid from chick embryo chondrocytes. Mol. Endocrinol. 1988; 2: 747–755
  • Jansen J., Van Buul‐Offers S. C., Hoogerbrugge C. M., De Poorter T. L., Corvol M. T., Van den Brande J. L. Characterization of specific insulin‐like growth factor (IGF)‐I and IGF ‐II receptors on cultured rabbit articular chondrocyte membranes. J. Endocrinol. 1989; 120: 245–249
  • Jentzsch K. D., Wellmitz G., Heder G., Petzold E., Buntrock P., Oehme P. A bovine brain fraction with fibroblast growth factor activity inducing articular cartilage regeneration in vivo. Acta. Biol. Bed. Ger. 1980; 39: 967–971
  • Kato Y., Gospodarowicz D. Growth requirements of low density rabbit costal chondrocytes cultures maintained in serum‐free medium. J. Cell. Physiol. 1984; 120: 354–363
  • Kato Y., Gospodarowicz D. Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor. J. Cell. Biol. 1985; 100: 477–485
  • Kato Y., Iwamato M. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J. Biol. Chem. 1990; 265: 5903–5909
  • Lee P. L., Johnson D. E., Cousens L. S., Fried V. A., Williams L. T. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989; 235: 57–60
  • Lobb R., Sasse J., Sullivan R., Shing Y., D'Amore P., Jacobs J., Klagsbrun M. Purification and characterization of heparin binding endothelial cell growth factor. J. Biol. Chem. 1986; 261: 1924–1928
  • Madsen K., Moskalewski S., Von den Mark K., Friberg U. Synthesis of proteoglycans, collagen, and elastin by cultures of rabbit articular chondrocytes—relation to age of the donor. Devel. Biol. 1983; 96: 63–73
  • Makower A. ‐M, Wroblewski J., Pawlowski A. Effects of IGF I, rGH, EGF and NCS on DNA‐synthesis, cell proliferation and morphology of chondrocytes isolated from rat rib growth cartilage. Cell Biol. Int. Rep. 1989; 13: 259–269
  • McNeil P. L., Muthukrishnan L., Warder E., D'Amore P. Growth factors are released by mechanically wounded endothelial cells. J. Cell Biol. 1989; 109: 811–822
  • Morales T. K. I., Hascall V. C. Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures. J. Biol. Chem. 1988; 263: 3632–3638
  • Mueller S. N., Thomas K. A., Di Salvo J., Levine E. M. Stabilization by heparin of acidic fibroblast growth factor mitogenicity for human endothelial cells in vitro. J. Cell. Physiol. 1989; 140: 439–448
  • Munaim S. I., Klagsbrun M., Toole B. P. Developmental changes in fibroblast growth factor in the chicken embryo limb bud. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 8091–8093
  • Plaas A. H., Sandy J. D. Age‐related decrease in the link‐stability of proteoglycan aggregates formed by articular chondrocytes. Biochem. J. 1984; 220: 337–340
  • Saksela O., Moscatelli D., Rifkin D. B. Endothelial cell‐derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell. Biol. 1988; 107: 743–751
  • Sandberg M., Vuorio T., Hirvonen H., Alitalo K. I., Vuorio E. Enhanced expression of TGF‐β and c‐fos mRNAs in the growth plates of developing human long bones. Development 1988; 102: 461–470
  • Schmidt A., Rodegerdts U., Buddecke E. Correlation of lysozyme activity with proteoglycan biosynthesis in epiphyseal cartilage. Calcif. Tiss. Res. 1978; 26: 163–172
  • Seed J., Olwin B. B., Hauschka S. D. Fibroblast growth factor levels in the whole embryo and limb bud during chick development. Devel. Biol. 1988; 128: 50–57
  • Sommer A., Rifkin D. B. Interaction of heparin with human basic fibroblast growth factor: Protection of the angiogenic protein from proteolytic degradation by a glyco‐saminoglycan. J. Cell. Physiol. 1989; 138: 215–220
  • Sullivan R., Klagsbrun M. Purification of cartilage‐derived growth factor by heparin affinity chromatography. J. Biol. Chem. 1985; 260: 2399–2403
  • Swenne I., Hill D. J., Strain A. J., Milner R. D. G. Growth hormone regulation of somatomedin‐C/insulin‐like growth factor I production and DNA replication in fetal rat islets in tissue culture. Diabetes 1987; 36: 288–294
  • Too C. K., Murphy P. R., Hamel A. M., Friesen H. G. Further purification of human pituitary derived chondrocyte growth factor: Heparin binding and cross‐reactivity with antiserum to basic FGF. Biochem. Biophys. Res. Commun. 1987; 144: 1128–1134
  • Trippel S. B., Corvol M. T., Dumontier M. F., Rappaport R., Hung H. H., Mankin H. J. Effect of somato‐medin‐C/insulin‐like growth factor I arid growth hormone on cultured growth plate and articular chondrocytes. Pedi‐atr. Res. 1989; 25: 76–82
  • Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai‐Michaeli R., Sasse J., Klagsbrun M. Endothelial cell‐derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 2292–2296
  • Wang J. ‐F., Becks G. P., Buckingham K. D., Hill D. J. Characterization of insulin‐like growth factor binding proteins secreted by isolated sheep thyroid epithelial cells. J. Endocrinol. 1990; 125: 439–448

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.