40
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Protection of Rat Myocardium by Mitogenic and Non-Mitogenic Fibroblast Growth Factor During Post-Ischemic Reperfusion

, , , , &
Pages 29-40 | Received 07 Dec 1996, Accepted 06 Apr 1997, Published online: 21 Aug 2009

References

  • Babbs C. F. Reperfusion injury of postischemic tissues. Ann. Emerg. Med. 1988; 17: 1148–1157
  • Baird A., Mormède P., Ying S. Y., Wehrenberg W. B., Ueno N., Ling N., Guillemin R. A nonmitogenic pituitary function of fibroblast growth factor: regulation of thyrotropin and prolactin secretion. Proc. Natl. Acad. Sci. USA 1985; 82: 5545–5549
  • Baird A., Hsueh A. J. W. Fibroblast growth factor as an intraovarian hormone: differential regulation of steroidogenesis by an angiogenic factor. Regul. Peptides 1986; 16: 243–250
  • Banai S., Jaklitsch M. T., Casscells W., Shou M., Shrivastav S., Correa R., Epstein S. E., Unger E. F. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ. Res. 1991; 69: 76–85
  • Barrios V., Cuevas P., Asin-Cardiel E., Cuevas B., Muñoz-Willery I., Giménez-Gallego G. Vasodilatory effect of fibroblast growth factors in pig precontracted coronary arteries. Eur. Heart J. 1992; 13: 291
  • Boddeke E., Hugtenburg J., Jap W., Heynis J., van Zwieten P. New anti-ischaemic drugs: cytoprotective action with no primary haemodynamic effects. Trends Pharmacol. Sci. 1989; 10: 397–400
  • Bolli R., Triana J. F., Jeroudi M. O. Prolonged impairment of coronary vasodilation after reversible ischemia. Circ. Res. 1990; 67: 332–343
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 1976; 72: 246–254
  • Braunwald E., Kloner R. A. Myocardial reperfusion: a double-edged sword?. J. Clin. Invest. 1985; 76: 1713–1719
  • Casscells W., Speir E., Sasse J., Klagsbrun M., Allen P., Lee M., Calvo B., Chiba M., Haggroth L., Folkman J., Epstein S. E. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J. Clin. Invest. 1990; 85: 433–441
  • Chilian W. M., Eastham C. L., Marcus M. L. Microvascular distribution of coronary vascular resistance in the beating left ventricle. Am. J. Physiol 1986; 251: H779–H788
  • Cole W. C., McPherson C. D., Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ. Res. 1991; 69: 571–581
  • Cuevas P., Carceller F., Ortega S., Zazo M., Nieto I., Giménez-Gallego G. Hypotensive activity of fibroblast growth factor. Science 1991; 254: 1208–1210
  • Cuevas P., González A. M., Carceller F., Baird A. Vascular response to basic fibroblast growth factor when infused onto the normal adventitia or into the injured media of the rat carotid artery. Circ. Res. 1991b; 69: 360–372
  • Daut J., Maier-Rudolph W., von Beckerath N., Mehrke G., Gunther K., Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990; 247: 1341–1344
  • Edelman E. R., Nugent M. A., Smith L. T., Karnovsky M. J. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J. Clin. Invest 1992; 89: 465–472
  • Editorial. Reperfusion injury after thrombolytic therapy for acute myocardial infarction. Lancet; September 1989; 16: 655–657
  • Escande D., Cavero I. K+ channel openers and “natural” cardioprotection. Trends Phamacol. Sci. 1992; 13: 269–272
  • Fina M., Baird A., Ryan A. Direct application of basic fibroblast growth factor improves tympanic membrane perforation healing. Laringoscope 1993; 103: 804–809
  • Ganote C. E., Humphrey S. M. Effects of anoxic or oxygenated reperfusion in globally ischemic, isovolumic, perfused rat hearts. Am. J. Pathol. 1985; 120: 129–145
  • Giménez-Gallego G., Cuevas P. Fibroblast growth factor, a protein with a broad spectrum of biological activities. Neurol. Res. 1994; 16: 181–183
  • Gutierrez-Diaz J. A., Cuevas P., Reimers D., Dujovny M., Diaz F. G., Ausman J. I. Quantitative electron microscopic study of calcium accumulation in cerebral ischemia mitochondria. Surg. Neurol. 1985; 24: 67–72
  • Imamura T., Engleka K., Zhan X., Tokita Y., Forough R., Roeder D., Jackson A., Maier J. A. M., Hla T., Maciag T. Recovery of mitogenic activity of a growth factor mutant with a nuclear translcation sequence. Science 1990; 249: 1567–1571
  • Jeremy R. W., Stahl L., Gillinov M., Litt M., Aversano T. R., Becker L. C. Preservation of coronary reserve in stunned myocardium. Am. J. Physiol. 1989; 256: H1303–H1310
  • Kardami E., Fandrich R. R. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J. Cell Biol. 1989; 109: 1865–1875
  • Kardami E., Padua R. R., Pasumarthi B. S., Liu L., Doble B. W., Davey S. E., Cattini P. A. Basic fibroblast growth factor in cardiac myocytes: expression and effects. Growth factors and the cardiovascular system, P. Cummins. Kluver Academic Publishers, Boston 1993; 54–75
  • Kim Y. D., Fomsgaard J. S., Heim K. F., Ramwell P. W., Thomas G., Kagan E., Moore B. S., Coughlin S. S., Kuwuhara M., Analuei A., Myers A. K. Brief ischemia-reperfusion induces stunning of endothelium in canine coronary artery. Circulation 1987; 85: 1473–148
  • Kjekshus J. K., Sober B. E. Depressed myocardial creatine phosphokinase activity following experimental myocardial infarction in rabbit. Circ. Res. 1979; 27: 403–409
  • Lefer A. M., Tasao P., Aoki N., Palladino M. A., Jr. Mediation of cardioprotection by transforming growth factor-B. Science 1990; 249: 61–64
  • Li Y., Kloner A. The cardioprotective effects of ischemic “preconditioning” are not mediated by adenosine receptors. Circulation 1993; 87: 1642–1648
  • Lindner V., Lappi D. A., Baird A., Majack R. A., Reidy M. A. Role of basic fibroblast growth factor in vascular lesion formation. Circ. Res. 1991; 68: 106–113
  • Lindner V., Reidy M. A. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc. Natl. Acad. Set. USA 1991; 88: 3739–3743
  • Miranda A. F., Babiss L. E., Fisher P. B. Measurement of the effect of interferons on cellular differentiation of human skeletal muscle cells. Methods in Enzymology, S. Pestka. Academic Press, Orlando 1986; 119: 619–628
  • Moscatelli D., Presta M., Rifkin D. B. Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration. Proc. Natl. Acad. Sci. USA 1986; 83: 2091–2095
  • Nayler W. G., Panagiotopoulos S., Elz J. S., Daly M. J. Calcium-mediated damage during post-ischaemic reperfusion. J. Mol. Cell Cardiol 1988; 20(Suppl II)41–54
  • Nichols W. W., Mehta J. L., Donnelly W. H., Lawson D., Thomson L., ter Riet M. Reduction in coronary vasodilator reserve following coronary occlusion and reperfusion in anesthetized dog: Role on endothelium-derived relaxing factor, myocardial neutrophil infiltration and pro-taglandins. J. Mol. Cell. Cardiol. 1988; 20: 943–954
  • Opie L. H., Phil D. Reperfusion injury and its pharmacologic modification. Circulation 1989; 80: 1049–1062
  • Ortega S., Schaeffer M. T., Soderman D., DiSalvo J., Line-Meyer D. L., Giménez-Gallego G., Thomas K. A. Conversion of cysteine to serine residues alters the activity, stability and heparin dependence of acidic fibroblast growth factor. J. Biol. Client. 1991; 266: 5842–5846
  • Presta M., Moscatelli D., Joseph-Silverstein J., Rifkin D. B. Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration. Mol. Cell Biol. 1986; 6: 4060–4066
  • Quast U., Cook N. S. Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol. Sci. 1989; 10: 431–435
  • Quinkler W., Maasberg M., Bernotat-Danielowski S., Luthe N., Sharma H. S., Schaper W. Isolation of heparin-binding growth factors from bovine, porcine and canine hearts. Eur. J. Biochem. 1989; 181: 67–73
  • Reimer K. A., Murry C. E., Richard V. J. The role of neutrophils and free radicals in the ischemic-reperfused heart: why the confusion and controversy?. J. Mol. Cell Cardiol. 1989; 21: 1225–1239
  • Rosengart T. K., Kuperschmid J. P., Maciag T., Clark R. Parmacokinetics and Distribution of heparin-binding growth factor I (endothelial cell growth factor) in the rat. Circ. Res. 1989; 64: 227–234
  • Saliba M. J., Covell J. W., Bloor C. M. Effects of heparin in large doses on the extent of myocardial ischemia after acute coronary occlusion in the dog. Am. J. Cardiol. 1976; 37: 599–604
  • Schmid-Schöbein G. W. Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed. Proc. 1987; 46: 2397–2401
  • Schweigerer L. Basic fibroblast growth factor as a wound healing hormone. Trends Pharmacol. Sci. 1988; 9: 427–428
  • Seno M., Sasada R., Lwane M., Sudo K., Kurokawa T., Ito K., Igarashi K. Stabilizing basic fibroblast growth factor using protein engineering. Biochem. Biophys. Res. Commun. 1988; 151: 701–708
  • Stahl L. D., Aversano T. R., Becker L. C. Selective enhancement of function of stunned myocardium by increased flow. Circulation 1986; 74: 843–851
  • Sullivan A. T., Baker D. J., Drew G. M. Effect of calcium channel blocking agents on infarct size after ischaemia-reperfusion in anaesthetised pigs: relationship between cardioprotection and cardiodepression. J. Cardiovasc. Pharmacol. 1991; 17: 707–716
  • Thomas K. A., Giménez-Gallego G. Fibroblast growth factors: broad spectrum mitogens with potent angiogenic activity. Trends Biochem. Sci. 1986; 11: 1–4
  • Thomas K. A., Rios-Candelore M., Giménez-Gallego G., DiSalvo J., Bennett C., Rodkey J., Fitzpatrick S. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc. Natl. Acad. Sci. USA 1985; 82: 6409–6413
  • Thompson J. A., Haudenschild C. C., Anderson K. D., DiPietro J. M., Anderson W. F., Maciag T. Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo. Proc. Natl. Acad. Sci. USA 1989; 86: 7928–7932
  • Unger E. F., Banai S., Shou M., Lazarus D. F., Jaklitsch M., Scheinowitz M., Correa R., Klingbeil C., Epstein S. E. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 1994; 266: H1588–H1595
  • VanBenthuysen K. M., McMurtry I. F., Horwitz L. D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J. Clin. Invest. 1987; 79: 265–274
  • von Beckerath N., Cyrys S., Dischner A., Daut J. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms. J. Physiol. 1991; 442: 297–319
  • Yanagisawa-Miwa A., Uchida Y., Nakamura F., Tomaru T., Kido H., Kamijo T., Sugimoto T., Kaji K., Utsuyama M., Kurashima C., Ito H. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992; 257: 1401–1403
  • Yang W. D., de Bono D. P. Vascular endothelial growth factor modulates endothelial resistance to hydrogen peroxide. Eur. Heart J. 1996; 17(suppl)190
  • Zazo M., Lozano R. M., Ortega S., Varela J., Díaz-Orejas R., Ramirez J. M., Giménez-Gallego G. High-level synthesis in Escherichia coli of shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions. Gene 1992; 113: 231–238

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.