19
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Translational Control Elements in the Major Human Transforming Growth Factor-β1 mRNA

, &
Pages 89-100 | Received 25 Feb 1998, Accepted 16 Apr 1998, Published online: 21 Aug 2009

References

  • Akhurst R. J., Fee F., Balmain A. Localized production of TGF-β mRNA in tumour promoter-stimulated mouse epidermis. Nature 1988; 331: 363–365
  • Arrick B. A., Grendell R. L., Griffin L. A. Enhanced translational efficiency of a novel transforming growth factor β3 mRNA in human breast cancer cells. Mol. Cell Biol. 1994; 14: 619–628
  • Arrick B. A., Lee A. L., Grendell R. L., Derynck R. Inhibition of translation of transforming growth factor-β3 mRNA by its 5′ untranslated region. Mol. Cell Biol. 1991; 11: 4306–4313
  • Braun L., Mead J. E., Panzica M., Mikumo R., Bell G. I., Fausto N. Transforming growth factor β mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. Proc. Natl. Acad. Sci. USA 1988; 85: 1539–1543
  • Brewer C. Cytomegalovirus plasmid vectors for permanent lines of polarized epithelial cells. Methods Cell Biol. 1994; 43: 233–245, (Pt. A)
  • Chevrier D. C., Vezina C., Bastille J., Linard C., Sonenberg N., Boileau G. Higher order structures of the 5′-proximal region decrease the efficiency of translation of the porcine pro-opiomelanocortin mRNA. J. Biol. Chem. 1988; 263: 902–910
  • Church G. M., Gilbert W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 1984; 81: 1991–1995
  • Czaja M. J., Flanders K. C., Biempica L., Klein C., Zern M. A., Weiner F. R. Expression of tumor necrosis factor-alpha and transforming growth factor-β1 in acute liver injury. Growth Factors 1989a; 1: 219–226
  • Czaja M. J., Weiner F. R., Flanders K. C., Giambrone M. A., Wind R., Biempica L., Zern M. A. In vitro and in vivo association of transforming growth factor-β1 with hepatic fibrosis. J. Cell Biol. 1989b; 108: 2477–2482
  • Danielpour D. Induction of transforming growth factor-fi autocrine activity by all-trans-retinoic acid and 1α,25-dihydroxyvitamin D3 in NRP-152 rat prostatic epithelial cells. J. Cell Physiol. 1996; 166: 231–239
  • Derynck R., Jarrett J. A., Chen E. Y., Eaton D. H., Bell J. R., Assoian R. K., Roberts A. B., Sporn M. B., Goeddel D. V. Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 1985; 316: 701–705
  • Fowlis D. J., Flanders K. C., Duffie E., Balmain A., Akhurst R. J. Discordant transforming growth factor β1 RNA and protein localization during chemical carcinogenesis of the skin. Cell Growth Differ. 1992; 3: 81–91
  • Gorsch S. M., Memoli V. A., Stukel T. A., Gold L. I., Arrick B. A. Immunohistochemical staining for transforming growth factor, 31 associates with disease progression in human breast cancer. Cancer Res. 1992; 52: 6949–6952
  • Graham F., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 1973; 52: 456–467
  • Grens A., Scheffler I. E. The 5′-and 3′-untranslated regions of ornithine decarboxylase mRNA affect the translation efficiency. J. Biol. Chem. 1990; 265: 11810–11816
  • Hershey J. W.B. Translational control in mammalian cells. Annu. Rev. Biochem. 1991; 60: 717–755
  • Huang F., Newman E., Theodorescu D., Kerbel R. S., Friedman E. Transforming growth factor β1 (TGFβ1) is an autocrine positive regulator of colon carcinoma U9 cells in vivo as shown by transfection of a TGF-β1 antisense expression plasmid. Cell Growth Differ. 1995; 6: 1635–1642
  • Kim S. J., Glick A., Sporn M. B., Roberts A. B. Characterization of the promoter region of the human transforming growth factor-β1 gene. J. Biol. Chem. 1989; 264: 402–408
  • Kim S. J., Park K., Koeller D., Kim K. Y., Wakefield L. M., Sporn M. B., Roberts A. B. Post-transcriptional regulation of the human transforming growth factor-β1 gene. J. Biol. Chem. 1992; 267: 13702–13707
  • Kondaiah P., Van Obberghen-Schilling E., Ludwig R. L., Dhar R., Sporn M. B., Roberts A. B. cDNA cloning of porcine transforming growth factor-β1 mRNAs. Evidence for alternate splicing and polyadenylation. J. Biol. Chem. 1988; 263: 18313–18317
  • Kozak M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 1986; 83: 2850–2854
  • Kozak M. An analysis of 5′-non-coding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987; 15: 8125–8148
  • Kozak M. The scanning model for translation: an update. J. Cell Biol. 1989a; 108: 229–241
  • Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell Biol. 1989b; 9: 5134–5142
  • Kozak M. An analysis of vertebrate mRNA sequences: intimations for translational control. J. Cell Biol. 1991; 115: 887–903
  • Kulkarni A. B., Huh C. G., Becker D., Geiser A., Lyght M., Flanders K. C., Roberts A. B., Sporn M. B., Ward J. M., Karlsson S. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 1993; 90: 770–774
  • Lafyatis R., Lechleider R., Kim S. J., Jakowlew S., Roberts A. B., Sporn M. B. Structural and functional characterization of the transforming growth factor β3 promoter. A cAMP-responsive element regulates basal and induced transcription. J. Biol. Chem. 1990; 265: 19128–19136
  • Lehnert S. A., Akhurst R. J. Embryonic expression pattern of TGF β3 type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development 1988; 104: 263–273
  • Manzella J. M., Blackshear P. J. Regulation of rat ornithine decarboxylase mRNA translation by its 5′-untranslated region. J. Biol. Chem. 1990; 265: 11817–11822
  • Markowitz S. D., Roberts A. B. Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine & Growth Factor Rev. 1996; 7: 93–102
  • Millan F. A., Denhez F., Kondaiah P., Akhurst R. J. Embryonic gene expression patterns of TGF β1, β2 and β3 suggest different developmental functions in vivo. Development 1991; 111: 131–143
  • Muller A. J., Witte O. N. The 5′ non-coding region of the human leukemia-associated oncogene BCR/ABL is a potent inhibitor of in vitro translation. Mol. Cell Biol. 1989; 9: 5234–5238
  • Noma T., Glick A. B., Geiser A. G., O'Reilly M. A., Miller J., Roberts A. B., Sporn M. B. Molecular cloning and structure of the human transforming growth factor-β2 gene promoter. Growth Factors 1991; 4: 247–255
  • Ostrowski L. E., Gray T. E., Randell S. H., Nettesheim P. Characterization of a third transforming growth factor PI transcript in rat tracheal epithelial cells. Cell Growth Differ. 1993; 4: 985–991
  • Parkin N. A., Darveau A., Nicholson R., Sonenberg N. Cis-acting translational effects of the 5′ noncoding region of c-myc mRNA. Mol. Cell Biol. 1988; 8: 2875–2883
  • Pelton R. W., Saxena B., Jones M., Moses H. L., Gold L. I. Immunohistochemical localization of TGF β1, TGF β2, and TGF β3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell Biol. 1991; 115: 1091–1105
  • Phillips A. O., Topley N., Steadman R., Morrisey K., Williams J. D. Induction of TGF-β1 synthesis in D-glucose primed human proximal tubular cells by IL-1β and TNF-α. Kidney Int. 1996; 50: 1546–1554
  • Proetzel G., Pawlowski S. A., Wiles M. V., Yin M., Boivin G. P., Howies P. N., Ding J., Ferguson M. W.J, Doetschman T. Transforming growth factor-β3 is required for secondary palate fusion. Nat. Genet. 1995; 11: 409–414
  • Qian S. W., Kondaiah P., Casscells W., Roberts A. B., Sporn M. B. A second messenger RNA species of transforming growth factor β in infarcted rat heart. Cell Regul. 1991; 2: 241–249
  • Rao D. C., Pech M., Robbins K. C., Aaronson S. A. The 5′ untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol. Cell Biol. 1988; 8: 284–292
  • Roberts A. B., Sporn M. B. Handbook of Experimental Pharmacology. Peptide Growth Factors and Their Receptors, M. B. Sporn, A. B. Roberts. Springer-Verlag, Berlin 1990; Vol. 95/I: 419–472
  • Romeo D., Allison R. S.H., Kondaiah P., Wakefield L. M. Recharacterization of the start sites for the major human transforming growth factor-β1 mRNA. Gene 1997; 189: 289–295
  • Romeo D. S., Park K., Roberts A. B., Sporn M. B., Kim S. J. An element of the transforming growth factor-β1 5′-untranslated region represses translation and specifically binds a cytosolic factor. Mol. Endocrinol. 1993; 7: 759–766
  • Sanford L. P., Ormsby I., Gittenberger-de Groot A. C., Sariola H., Friedman R., Boivin G. P., Cardell E. L., Doetschman T. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 1997; 124: 2659–2670
  • Scotto L., Assoian R. K. A GC-rich domain with bifunctional effects on mRNA and protein levels: implications for control of transforming growth factor β1 expression. Mol. Cell Biol. 1993; 13: 3588–3597
  • Scotto L., Vaduva P. I., Wager R. E., Assoian R. K. Type β transforming growth factor gene expression. A corrected mRNA structure reveals a downstream phorbol ester responsive element in human cells. J. Biol. Chem. 1990; 265: 2203–2208
  • Steiner M. S., Barrack E. R. Transforming growth factor-β1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol. Endocrinol. 1992; 6: 15–25
  • Thompson N. L., Bazoberry F., Speir E. H., Casscells W., Ferrans V. J., Flanders K. C, Kondaiah P., Geiser A. G., Sporn M. B. Transforming growth factor β-1 in acute myocardial infarction in rats. Growth Factors 1988; 1: 91–99
  • Thompson N. L., Flanders K. C, Smith J. M., Ellingsworth L. R., Roberts A. B., Sporn M. B. Expression of transforming growth factor-β1 in specific cells and tissues of adult and neonatal mice. J. Cell Biol. 1989; 108: 661–669
  • Wu S. P., Theodorescu D., Kerbel R. S., Willson J. K., Mulder K. M., Humphrey L. E., Brattain M. G. TGF-β1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J. Cell Biol. 1992; 116: 187–196

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.