24
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Investigation of the Molecular Mechanisms Underlying Growth Factor Synergy: The Role of ERK 2 Activation in Synergy

, , , , &
Pages 293-306 | Received 12 Jan 1997, Accepted 02 Feb 1998, Published online: 21 Aug 2009

References

  • Alai M., Mui A. L., Cutler R. L., Bustelo X. R., Barbacid M., Krystal G. Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells. J Biol Chem 1992; 267: 18021–5
  • Brizzi M. F., Zini M. G., Aronica M. G., Blechman J. M., Yarden Y., Pegoraro L. Convergence of signaling by interleukin-3, granulocyte-macrophage colony-stimulating factor, and mast cell growth factor on JAK2 tyrosine kinase. J Biol Chem 1994; 269: 31680–4
  • Broxmeyer H. E., Cooper S., Lu L., Hangoc G., Anderson D., Cosman D., Lyman S. D., Williams D. E. Effect of murine mast cell growth factor (c-kit proto-oncogene ligand) on colony formation by human marrow hematopoietic progenitor cells. Blood 1991; 77: 2142–9
  • Chuang C. F., Ng S. Y. Functional divergence of the MAP kinase pathway. ERK 1 and ERK 2 activate specific transcription factors. FEBS Lett 1994; 346: 229–234
  • Corey S., Eguinoa A., Puyana-Theall K., Bolen J. B., Cant-Ley L., Mollinedo F., Jackson T. R., Hawkins P. T., Stephens L. R. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J 1993; 12: 2681–2690
  • Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268: 14553–14556
  • Dorsch M., Hock H., Diamantstein T. Tyrosine phosphorylation of SHC is induced by IL-3, IL-5 and the alpha subunit of the human granulocyte-macrophage factor receptor signals for glucose transport via a independent pathway. Biochem Biophys Res Commun 1994; 200: 562–568
  • Duronio V., Welham M. J., Abraham S., Dryden P., Schrader J. W. p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras Gtpase-activating protein. Proc Natl Acad Sci USA 1992; 89: 1587–91
  • Gasson J. C. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 1991; 77: 1131–45
  • Guan K. L., Butch E. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase. J Biol Chem 1995; 270: 7197–203
  • Hallek M., Ando K., Eder M., Slattery K., Ajchenbaum-Cymbalista F., Griffin J. D. Signal transduction of steel factor and granulocyte-macrophage colony-stimulating factor: differential regulation of transcription factor and G1 cyclin gene expression, and of proliferation in the human factor-dependent cell line M07. Leukemia 1994; 8: 740–748
  • Hallek M., Druker B., Lepisto E. M., Wood K. W., Ernst T. J., Griffin J. D. Granulocyte-macrophage colony-stimulating factor and steel factor induce phosphorylation of both unique and overlapping signal transduction intermediates in a human factor-dependent hematopoietic cell line. J Cell Physiol 1992; 153: 176–186
  • Hendrie P. C., Miyazawa K., Yang Y. C., Langefeld C. D., Broxmeyer H. E. Mast cell growth factor (c-kit ligand) enhances cytokine stimulation of proliferation of the human factor-dependent cell line, M07e. Exp Hematol 1991; 19: 1031–7
  • Heyworth C. M., Alauldin M., Cross M. A., Fairbairn L. J., Dexter T. M., Whetton A. D. Erythroid development of the FDCP-Mix A4 multipotent cell line is governed by the relative concentrations of erythropoietin and interleukin 3. Br J Haematol 1995; 91: 15–22
  • Heyworth C. M., Dexter T. M., Kan O., Whetton A. D. The role of hemopoietic growth factors in self-renewal and differentiation of IL-3-dependent multipotential stem cells. Growth Factors 1990; 2: 197–211
  • Heyworth C. M., Whetton A. D., Nicholls S., Zsebo K., Dexter T. M. Stem cell factor directly stimulates the development of enriched granulocyte-macrophage colony-forming cells and promotes the effects of other colony-stimulating factors. Blood 1992; 80: 2230–2236
  • Horie M., Broxmeyer H. E. Involvement of immediate-early gene expression in the synergistic effects of steel factor in combination with granulocyte-macrophage colony-stimulating factor or interleukin-3 on proliferation of a human factor-dependent cell line. J Biol Chem 1993; 268: 968–973
  • Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur-J-Immunol 1988; 18: 97–104
  • Keel B. A., Hildebrandt J. M., May J. V., Davis J. S. Effects of epidermal growth factor on the tyrosine phosphorylation of mitogen-activated protein kinases in monolayer cultures of porcine granulosa cells. Endocrinology 1995; 136: 1197–1204
  • Keller J. R., Ortiz M., Ruscetti F. W. Steel factor (c-kit ligand) promotes the survival of hematopoietic stem/progenitor cells in the absence of cell division. Blood 1995; 86: 1757–64
  • Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marme D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 1993; 364: 249–52
  • Krautwald S., Buscher D., Dent P., Ruthenberg K., Baccarini M. Suppression of growth factor-mediated MAP kinase activation by v-raf in macrophages: a putative role for the MKP-1 phosphatase. Oncogene 1995; 10: 1187–1192
  • Lowry P. A., Deacon D., Whitefield P., McGrath H. E., Quesenberry P. J. Stem cell factor induction of in vitro murine hematopoietic colony formation by “subliminal” cytokine combinations: the role of “anchor factors”. Blood 1992; 80: 663–9
  • Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–85
  • Matsuguchi T., Inhorn R. C., Carlesso N., Xu G., Druker B., Griffin J. D. Tyrosine phosphorylation of p95Vav in myeloid cells in regulated by GM-CSF, IL-3 and steel factor and is constitutively increased by p210BCRIABL. Embo J 1995; 14: 257–65
  • Matsuguchi T., Salgia R., Hallek M., Eder M., Druker B., Ernst T. J., Griffin J. D. Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210BCRIABL. J Biol Chem 1994; 269: 5016–21
  • McKinstry W. J., Li C. L., Rasko J. E., Nicola N. A., John-Son G. R., Metcalf D. Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 1997; 89: 65–71
  • McNiece I. K., Langley K. E., Zsebo K. M. Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp Hematol 1991a; 19: 226–31
  • McNiece I. K., Langley K. E., Zsebo K. M. The role of recombinant stem cell factor in early B cell development. Synergistic interaction with IL-7. J Immunol 1991b; 146: 3785–90
  • Metcalf D., Nicola N. A. Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: effects of combination with colony-stimulating factors. Proc Natl Acad Sci USA 1991; 88: 6239–43
  • Migliaccio G., Migliaccio A. R., Druzin M. L., Giardina P. J., Zsebo K. M., Adamson J. W. Effects of recombinant human stem cell factor (SCF) on the growth of human progenitor cells in vitro. J Cell Physiol 1991a; 148: 503–9
  • Migliaccio G., Migliaccio A. R., Valinsky J., Langley K., Zsebo K., Visser J. W., Adamson J. W. Stem cell factor induces proliferation and differentiation of highly enriched murine hematopoietic cells. Proc Natl Acad Sci USA 1991b; 88: 7420–4
  • Miyajima A. Molecular structure of the IL-3, GM-CSF and IL-5 receptors. Int J Cell Cloning 1992; 10: 126–34
  • Molineux G., Migdalska A., Szmitkowski M., Zsebo K., Dexter T. M. The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 1991; 78: 961–6
  • Mordret G. MAP kinase kinase: a node connecting multiple pathways. Biol Cell 1993; 79: 193–207
  • Mui A. L., Miyajima A. Cytokine receptors and signal transduction. Prog Growth Factor Res 1994; 5: 15–35
  • O'Farrell A. M., Ichihara M., Mui A. L., Miyajima A. Signaling pathways activated in a unique mast cell line where interleukin-3 supports survival and stem cell factor is required for a proliferative response. Blood 1996; 87: 3655–68
  • Okuda K., Sanghera J. S., Pelech S. L., Kanakura Y., Hallek M., Griffin J. D., Druker B. J. Granulocyte-macrophage colony-stimulating factor, interleukin-3, and steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase. Blood 1992; 79: 2880–2887
  • Owen Lynch P. J., Wong A. K., Whetton A. D. v-Abl-mediated apoptotic suppression is associated with Shc phosphorylation without concomitant mitogen-activated protein kinase activation. J Biol Chem 1995; 270: 5956–62
  • Pelech S. L., Sanghera J. S. MAP kinases: charting the regulatory pathways. Science 1992; 257: 1355–1356
  • Quelle F. W., Sato N., Witthuhn B. A., Inhorn R. C., Eder M., Miyajima A., Griffin J. D., Ihle J. N. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 1994; 14: 4335–4341
  • Reith A. D., Ellis C., Lyman S. D., Anderson D. M., Williams D. E., Bernstein A., Pawson T. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J 1991; 10: 2451–9
  • Rottapel R., Reedijk M., Williams D. E., Lyman S. D., Anderson D. M., Pawson T., Bernstein A. The Steel/W transduction pathway: kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol Cell Biol 1991; 11: 3043–3051
  • Russell E. S. Hereditary anemias of the mouse: a review for geneticists. Adv Genet 1979; 20: 357–459
  • Sakamaki K., Miyajima I., Kitamura T., Miyajima A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBOJ 1992; 11: 3541–9
  • Sato N., Sakamaki K., Terada N., Arai K., Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta sub-unit responsible for different signaling. EMBO J 1993; 12: 4181–9
  • Saunier B., Tournier C., Jacquemin C., Pierre M. Stimulation of mitogen-activated protein kinase by thyrotropin in primary cultured human thyroid follicles. J Biol Chem 1995; 270: 3693–7
  • Sozeri O., Vollmer K., Liyanage M., Frith D., Kour G., Mark G., Stabel S. Activation of the c-raf protein kinase by protein kinase C phosphorylation. Oncogene 1992; 7: 2259–2262
  • Spooncer E., Heyworth C. M., Dunn A., Dexter T. M. Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation 1986; 31: 111–8
  • Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J 1992; 288: 351–355
  • Troppmair J., Bruder J. T., Munoz H., Lloyd P. A., Kyriakis J., Banerjee P., Avruch J., Rapp U. R. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12–0-tetradecanoylphorbol-13- acetate requires Raf and is necessary for transformation. J Biol Chem 1994; 269: 7030–7035
  • Tsuji K., Lyman S. D., Sudo T., Clark S. C., Ogawa M. Enhancement of murine hematopoiesis by synergistic interactions between steel factor (ligand for c-kit), interleukin-11, and other early acting factors in culture. Blood 1992; 79: 2855–60
  • Ward Y., Gupta S., Jensen P., Wartmann M., Davis R. J., Kelly K. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PACI. Nature 1994; 367: 651–654
  • Weiler S. R., Mou S., DeBerry C. S., Keller J. R., Ruscetti F. W., Ferris D. K., Longo D. L., Linnekin D. JAK2 is associated with the c-kit protooncogene product and is phosphorylated in response to stem cell factor. Blood 1996; 87: 3688–93
  • Welham M. J., Dechert U., Leslie K. B., Jirik F., Schrader J. W. Interleukin (IL)-3 and granulocyte/macrophage colony-stimulating factor, but not IL-4, induce tyrosine phosphorylation, activation, and association of SHPTP2 with Grb2 and phosphatidylinositol 3′-kinase. J Biol Chem 1994a; 269: 23764–23768
  • Welham M. J., Duronio V., Leslie K. B., Bowtell D., Schrader J. W. Multiple hemopoietins, with the exception of interleukin-4, induce modification of Shc and mSos1, but not their translocation. J Biol Chem 1994b; 269: 21165–21176
  • Welham M. J., Duronio V., Sanghera J. S., Pelech S. L., Schrader J. W. Multiple hemopoietic growth factors stimulate activation of mitogen- activated protein kinase family members. J Immunol 1992; 149: 1683–1693
  • Whetton A. D., Valiance S. J., Monk P. N., Cragoe E. J., Dexter T. M., Heyworth C. M. Interleukin-3-stimulated haemopoietic stem cell proliferation. Evidence for activation of protein kinase C and Na+/H+ exchange without inositol lipid hydrolysis. Biochem J 1988; 256: 585–92
  • Witte O. N. Steel locus defines new multipotent growth factor. Cell 1990; 63: 5–6
  • Yeung Y. G., Jubinsky P. T., Sengupta A., Yeung D. C., Stanley E. R. Purification of the colony-stimulating factor 1 receptor and demonstration of its tyrosine kinase activity. Proc Natl Acad Sci USA 1987; 84: 1268–1271
  • Zhou G. X., Meier K. E., Buse M. G. Sequential activation of two mitogen activated protein (MAP) kinase isoforms in rat skeletal muscle following insulin injection. Biochem Biophys Res Commun 1993; 197: 578–584

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.